Question Number	Answer	Acceptable answers	Mark
1(a)	$\mathrm{CaCl}_{2}=40+35.5+35.5$ $(=111)$ (1) THEN moles $=11.1 / 111$ $(=0.1)$ (1) conc $=$ moles $\times 1000 / 500$ (1) $(=0.2)$ OR mass conc $=11.1 \times 1000 / 500$ $(=22.2)$ $1)$ conc $=$ mass conc $/ 111$ (1) $(=0.2)$	0.2 scores 3 ecf: 11.1 / Mr ecf: mass conc / 111	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i)}$	A description linking - pipette (1) one practical point eg draw liquid up to line/ use pipette filler/ rinse first / read at eye level (1)	ignore burette etc for $1^{\text {st }} \mathrm{mpt}$ if using measuring cylinder/ burette allow suitable practical point eg read at eye level/ add dropwise from burette near 25 cm^{3} (1) ignore as 2 2nd point: transfer liquid to flask / safety precautions	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i i)}$	D $25.20 \mathrm{~cm}^{3}$		(1)

Questio Number		Indicative Content	Mark
QWC	*1(c)	A description / explanation including some of the following points soft - add soap (solution) - shake/ mix - lather (immediately) - no scum/ no precipitate permanent hard - add soap (solution) - shake - no lather / less than with soft water - scum/ precipitate - boiled sample - same results / boiling does not change - becomes soft after ion exchange but not after boiling temporary hard - add soap (solution) - shake - no lather / less than with soft water - scum/ precipitate - boiled sample - after boiling precipitate / (lime)scale formed - lather (immediately) credit quantitative approaches e.g. titration with soap solution	(6)

Level	0	No rewardable content
1	1-2	- a limited description e.g. test and one result / when shaken with soap, soft water makes lather but no scum - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	3-4	- a simple description e.g. describe test and results to distinguish the soft water and the two samples that are hard water / when shaken with a small amount of soap, soft water makes a lather and no scum but the other waters make scum but no (less) lather - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5-6	- a detailed description e.g. describe test and results to identify all three of the samples / as 3-4 and boil the two hard water samples and repeat test. That which now gives a lather is temporarily hard - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a)}$	A neutralisation		(1)

Question Number	Answer	Acceptable answers	Mark
2(b)	Any one from - no \{sharp/clear/distinct\} change in colour - gradual colour change - there are too many different colours	ignore not as accurate/reliable allow too difficult to see when it is \{neutral/reaction is complete\} ignore speed of colour change	(1)

Question Number		Indicative Content	Mark
QWC	*2(c)	A description including some of the following points titration experiment - rinse pipette with alkali and burette with acid - measure alkali using a pipette - into suitable container e.g. flask/beaker - add a few drops of indicator / suitable named indicator (eg methyl orange/phenolphthalein) - flask on a white tile - fill burette with acid - read level/volume (of acid) in burette - add acid from burette to the flask slowly / swirl the flask - until \{indicator just changes colour/correct colour change for named indicator (eg methyl orange yellow to peach/orange, phenolphthalein pink to colourless)/solution is neutral\} - read level/volume (of acid) in burette - repeat experiment - until concordant results salt preparation - mix the same volume of alkali with the volume of acid determined from the first experiment but do not add indicator (or add (activated) charcoal to remove indicator, then filter) - pour solution into an evaporating basin - \{heat solution/leave the water to evaporate\} until pure salt crystals are left	(6)
Level	0	No rewardable content	
1	1-2	- a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. - the answer communicates ideas using simple language and u limited scientific terminology - spelling, punctuation and grammar are used with limited accu	
2	3-4	- a simple description of titration and/or salt preparation e.g. pip sodium hydroxide solution into flask, add indicator, place hyd acid in burette, add acid to alkali until colour change. - the answer communicates ideas showing some evidence of cl organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accur	pette ochloric rity and Cy
3	5-6	- a detailed description including titration and salt preparation pipette sodium hydroxide solution into flask, add indicator, hydrochloric acid in burette, add acid to alkali until colour ch repeat until concordant results, evaporate water. - the answer communicates ideas clearly and coherently uses a of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	g. ge, ange

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (d) (i)}$	$\frac{22.6+22.8}{2}$	(1) $(=22.7)$	

Question Number	Answer	Acceptable answers	Mark
2(d)(ii)	marks are for the working $\begin{aligned} & \text { no. moles } \mathrm{HCl}=\frac{23.2 \times 0.1}{1000} \\ & \qquad\left(=2.32 \times 10^{-3}\right) \end{aligned}$ no. moles $\mathrm{NaOH}=$ no. moles HCl (1) conc $\mathrm{NaOH}=\underline{2.32 \times 10^{-3} \times 1000}$ (1) $\begin{gathered} 25.0 \\ \left(=0.0928 \mathrm{~mol} \mathrm{dm}^{-3}\right) \end{gathered}$ mark consequentially OR $\frac{\text { no. } \text { moles } \mathrm{NaOH} \text { reacting }}{\text { no. moles } \mathrm{HCl} \text { reacting }} \frac{1}{1}$ $\begin{align*} \frac{25.0 \times \text { conc }}{23.2 \times 0.1} & =\frac{1}{1} \tag{1}\\ \text { conc } \mathrm{NaOH} & =\frac{0.1 \times 23.2}{25.0}(1) \\ & (=0.0928) \mathrm{mol} \mathrm{dm}^{-3} \end{align*}$ OR use of $c_{1} v_{1}=c_{2} v_{2}(1)$ $\begin{aligned} 0.1 \times 23.2 & =\text { conc } \times 25.0(1) \\ \text { conc } \mathrm{NaOH} & =\frac{0.1 \times 23.2}{25.0}(1) \\ & (=0.0928) \mathrm{mol} \mathrm{dm}^{-3} \end{aligned}$	0.0928/0.093 with or without working (3) 0.09 with no working (2) common incorrect answers with working 0.108/0.1077 (2) - used 1:1 ratio but $25 \times 0.1 / 23.2$ 0.928 (2) - used 1:1 ratio but missed out 0.1	(3)

Question number	Answer	Additional guidance	Mark
3(a)	Formula mass ammonium chloride $=14.0+4.00+35.5=53.5$ moles of ammonium chloride $=\frac{10.0}{53.5}=0.187$ volume ammonia $\begin{aligned} & =0.187 \times 24 \\ & =4.49 \mathrm{dm}^{3}(1) \end{aligned}$ or - $2 \times 53.5=107 \mathrm{~g}$ ammonium chloride produces $2 \times 24=$ $48 \mathrm{dm}^{3}$ ammonia (1) - 10.0 g ammonium chloride produces $\begin{aligned} & \frac{10.0}{2 \times 53.5} \times 2 \times 24=4.49 \mathrm{dm}^{3} \\ & \text { ammonia (1) } \end{aligned}$	Award full marks for correct numerical answer without working.	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{3 (b) (\mathbf { i })}$	$25 \div 1000 \times 0.1=0.0025(1)$		
	$35 \div 1000 \times 0.075=0.002625$ (1) The acid is in excess (1)	Third mark only awarded as conclusion from calculated data.	(3)

Question number	Answer	Mark
$\mathbf{3 (b) (i i)}$	$\frac{36.20+36.30}{2}=36.25(1)$	(1)

Question number	Answer	Mark
3(b)(iii)	D	(1)

Question number	Answer	Additional guidance	Mark
3(c)	```mol of acid \(=24.80 \div 1000 \times\) 0.200 (\(=0.00496 \mathrm{~mol}\)) (1) \(\mathrm{mol} \mathrm{NaOH}=2 \times 0.00496\) (=0.009 92) (1) conc. of \(\mathrm{NaOH}=0.00992 \div 25.0\) \(\times 1000(1)\) \(=0.3968 / 0.397\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)\) or \((25.00 \times\) conc NaOH\() \div 2=24.80\) \(\times 0.200(2)\) conc \(\mathrm{NaOH}=2 \times 24.80 \times 0.200 \div\) 25.00 (1) \(=0.3968 / 0.397\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)\)```	Award full marks for correct numerical answer without working. Allow max 3 marks if missing ' $2 \times$ ' in step 2.	(4)

Question Number	Answer	Acceptable answers	Mark
4(a)	D aq I		(1)

Question Number	Answer	acceptable answers	Mark
4(b)	$\mathrm{H}^{+}+\mathrm{OH}^{-}$(1) $\rightarrow \mathrm{H}_{2} \mathrm{O}$ (1)	LHS (1) RHS (1) ignore state symbols, even if incorrect. allow inclusion of spectator ions, Na^{+}and Cl, if shown on both sides for one mark max	(2)

Question Number	Answer	Acceptable answers	Mark
4(c)(i)	suitable acid-base indicator eg methyl orange, phenolphthalein	litmus reject universal indicator allow recognisable phonetic spelling	(1)

Question Number	Answer	Acceptable answers	Mark		
4(c)(ii)	correct colour change for suitable indicator in 4(c)(i): methyl orange : yellow \rightarrow orange/pink/red phenolphthalein : magenta/pink \rightarrow colourless	litmus : blue \rightarrow red			
ignore clear				\quad (1) \quad	
:---					

Link 4ci and 4cii together on e-Pen

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (d)}$	rel mass $\mathrm{NaOH}=23.0+16.0+$ $1.00(1)$	$(=40.0)(1)$	
	concentration $=$20.0 $\times 1(1)$ formula mass	$0.5\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ without working (2)	(2)

Question Number	Answer	Acceptable answers	Mark
4(e)	$\begin{aligned} & \begin{array}{l} \text { moles of } \mathrm{NaOH}=\frac{25.0 \times 1.50}{1000} \\ \text { ratio } 1: 1 / \quad(=0.0375 \mathrm{moles}) \\ \text { moles } \mathrm{NaOH}= \end{array} \\ & \text { conc of } \mathrm{HCl}=\frac{0.0375 \times 1000(1)}{30.0} \\ & \quad\left(=1.25\left(\mathrm{~mol} \mathrm{dm}{ }^{-3}\right)\right) \\ & \mathrm{OR} \\ & 25.0 \times 1.50=30.0 \times \text { conc acid }(2) \\ & \text { conc of } \left.\mathrm{HCl}=\frac{25.0 \times 1.50(1)}{30.0}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right) \end{aligned}$	0.0375 (1) - without working shown conc of $\mathrm{HCl}=1.25\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(3)$ without any working shown allow ecf $\text { conc }=\frac{30.0 \times 1.50}{25.0}=\frac{1.80(2)}{\left(\mathrm{mol} \mathrm{dm}^{-3}\right)}$ allow 0.00125 / 0.125 / 12.5 max 2	(3)

