| Question<br>Number | Answer                                                                                                             | Acceptable answers                                                                                                                                                                                           | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>1</b> (a)(i)    | fractional distillation                                                                                            |                                                                                                                                                                                                              | (1)  |
| Question<br>Number | Answer                                                                                                             | Acceptable answers                                                                                                                                                                                           | Mark |
| 1(a)(ii)           | to make it liquid                                                                                                  | liquefy/condense<br>to remove water (vapour)<br>to remove carbon dioxide                                                                                                                                     | (1)  |
| Question<br>Number | Answer                                                                                                             | Acceptable answers                                                                                                                                                                                           | Mark |
| <b>1</b> (b)       | D weak forces of attraction between the oxygen molecules                                                           |                                                                                                                                                                                                              | (1)  |
| Question<br>Number | Answer                                                                                                             | Acceptable answers                                                                                                                                                                                           | Mark |
| 1(c)(i)            | An description including <ul><li>shared (electrons) (1)</li><li>pair(s) of electrons (between atoms) (1)</li></ul> | Ignore reference to complete/full shells Ignore reference to between two metals Ignore reference to between metal and non-metal Ignore reference to between molecules Any reference to between ions scores 0 | (2)  |
| Question<br>Number | Answer                                                                                                             | Acceptable answers                                                                                                                                                                                           | Mark |

| Question | Answer | Acceptable answers | Mark |
|----------|--------|--------------------|------|
| Number   |        |                    |      |
| 1(c)(ii) | 2.4    |                    | (1)  |
|          |        |                    |      |

| Question<br>Number | Answer                                                                                                                                            | Acceptable answers                                                                                                                                   | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1(c)(iii)          | <ul> <li>diagram showing</li> <li>any shared pair of electrons<br/>between a carbon and oxygen<br/>atom in CO<sub>2</sub> molecule (1)</li> </ul> | Must have O C O arrangement  If any atom labelled must be correct                                                                                    |      |
|                    | rest of molecule correct (1)                                                                                                                      | Ignore inner electrons even if wrong electrons can be on/in ring or no ring Ignore intersecting circles  Accept all permutations of dots and crosses | (2)  |

| Question number | Answer                                                                                                                                                          | Additional guidance                                  | Mark |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------|
| 2(a)(i)         | <ul> <li>particles are same size when they should be different sizes <ul> <li>(1)</li> <li>model is in 2D but crystal is 3D</li> <li>(1)</li> </ul> </li> </ul> | Allow reverse statements giving correct information. | (2)  |

| Question number | Answer                                                                                                                                                                                                                                                                                                                                  | Mark |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2(a)(ii)        | <ul> <li>An explanation that combines identification – knowledge (1 mark) and reasoning/justification – understanding (2 marks):</li> <li>very strong bonds/ionically bonded (1)</li> <li>between 2+ cations and 2– anions (1)</li> <li>so requires lot of energy to separate magnesium and oxide ions to melt the solid (1)</li> </ul> | (3)  |

| Question number | Answer                                                                                                         | Additional guidance    | Mark |
|-----------------|----------------------------------------------------------------------------------------------------------------|------------------------|------|
| <b>2</b> (b)(i) | $CaCO_3 + 2HCI \rightarrow CaCI_2 + H_2O$<br>+ $CO_2$<br>• all formulae on correct side (2)<br>• balancing (1) | Allow 3/4 formulae (1) | (3)  |

| Question number | Answer                                                                                                                                                                                                                                                                          | Additional guidance                                            | Mark |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------|
| 2(b)(ii)        | relative formula mass copper carbonate $= 63.5 + 12.0 + (3 \times 16.0)$ $= 123.5$ relative formula mass copper oxide $= 63.5 + 16.0$ $= 79.5 (1)$ mass copper oxide $= \frac{15.0 \times 79.5}{123.5} = 9.7 \text{ g to 2 s.f. (1)}$ Answer must be to two significant figures | Award full marks for correct numerical answer without working. |      |
|                 | OR moles of copper carbonate $= \frac{15.0}{123.5} = 0.12145(1)$ mass of copper oxide $= \text{moles CuCO}_3 \times 79.5$ $= 9.7 \text{ g to 2sf (1)}$ Answer must be to two significant figures                                                                                |                                                                | (2)  |

| Question number | Answer                                                                                                                                                                                                        | Additional guidance                                            | Mark |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------|
| <b>2</b> (c)    | 2.4/24 moles Mg = 0.1 mol (1)<br>and 0.2 moles $H_2O$ has mass<br>0.2 × formula mass $H_2O$ = 3.6 g<br>(1)<br>total mass reactants = 2.4 + 3.6 =<br>6.0 g is the same as<br>total mass products = 5.8 + 0.2 = | Award full marks for correct numerical answer without working. |      |
|                 | 6.0 g (1)                                                                                                                                                                                                     |                                                                | (3)  |

| Question        | Answer    | Acceptable answers | Mark |
|-----------------|-----------|--------------------|------|
| Number          |           |                    |      |
| <b>3(</b> a)(i) | electrons |                    | (1)  |
|                 |           |                    |      |

| Question | Answer                        | Acceptable answers | Mark |
|----------|-------------------------------|--------------------|------|
| Number   |                               |                    |      |
| 3(a)(ii) | transition (metals/ elements) | transitional       | (1)  |
|          |                               | ignore transient   |      |

| Question<br>Number | Answer                                                                                              | Acceptable answers                  | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------|------|
| <b>3</b> (b)       | An explanation linking the following points  • hydrogen chloride {soluble/dissolves} (in water) (1) | hydrogen chloride reacts with water |      |
|                    | forms hydrochloric acid (1)                                                                         |                                     | (2)  |

| Question<br>Number | Answer                                                                                            | Acceptable answers                                                     | Mark |
|--------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|
| 3(c)               | An explanation including <b>two</b> of the following points  • (orange) colour due to bromine (1) |                                                                        |      |
|                    | <ul> <li>chlorine displaces bromine</li> <li>(1)</li> </ul>                                       | chlorine displaces bromide (ions) a displacement reaction (occurs)OWTE |      |
|                    | (because) chlorine is more reactive (than bromine) (1)                                            |                                                                        | (2)  |

| Question<br>Number | Answer                                                                     | Acceptable answers                                           | Mark |
|--------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|------|
| <b>3</b> (d)       | A description including <b>three</b> of the following points               |                                                              |      |
|                    | • mix solutions (1)                                                        | pour (both) solutions into {beaker/other suitable container} |      |
|                    | • filter (1)                                                               | ignore addition of hydrochloric acid                         |      |
|                    | <ul> <li>wash (precipitate / solid)<br/>with water (1)</li> </ul>          |                                                              |      |
|                    | <ul> <li>dry (precipitate / solid) in<br/>oven /leave to dry(1)</li> </ul> | if wrong things mixed allow max 2 from last three points     | (3)  |

| Question<br>Number | Answers                                 |                       |                       | Acceptable Answers | Mark |
|--------------------|-----------------------------------------|-----------------------|-----------------------|--------------------|------|
| 4 (a)(i)           | number<br>of<br>protons<br>number<br>of | chlorine-<br>35<br>17 | chlorine-<br>37<br>17 |                    |      |
|                    | neutrons<br>number<br>of<br>electrons   | 17                    | 17                    |                    |      |
|                    | the four 1                              |                       |                       |                    | (2)  |

| Question<br>Number | Answers                                                                                                                                                                                                | Acceptable Answers                                                                                                                   | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------|
| 4 (a) (ii)         | An explanation linking M1 average (mass of atoms/isotopes present) (1) M2 more chlorine-35 than chlorine-37 / higher {percentage / abundance} of CI-35 / lower {percentage / abundance} of CI-37 / (1) | mean ignore weight  75% chlorine-35 / 25% chlorine-37/ chlorine-35 and chlorine-37 in ratio 3:1 / correct calculation to obtain 35.5 |      |
|                    |                                                                                                                                                                                                        | (2)<br>eg[(75x35) + (25x37)]/100                                                                                                     | (2)  |

| Question<br>Number | Answers                                                                        | Acceptable Answers                                   | Mark |
|--------------------|--------------------------------------------------------------------------------|------------------------------------------------------|------|
| 4 (b)              | Diagram showing one carbon and four chlorines                                  | use of dots or crosses or mixture of both            |      |
|                    | four pairs of electrons shared<br>between the carbon and<br>chlorine atoms (1) | ignore inner shells even if incorrect ignore symbols |      |
|                    | fully correct (1)                                                              |                                                      | (2)  |

| Questi<br>Numbe |             | Indicative Content                                                                                                                                                                                                                                                                                                                                                                            | Mark |
|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| QWC             | <b>4(c)</b> | A response including some of the following points                                                                                                                                                                                                                                                                                                                                             |      |
|                 |             | Note: (carbon to carbon) strong bonds is given in question                                                                                                                                                                                                                                                                                                                                    |      |
|                 |             | Diamond:                                                                                                                                                                                                                                                                                                                                                                                      |      |
|                 |             | Uses and Properties                                                                                                                                                                                                                                                                                                                                                                           |      |
|                 |             | <ul> <li>in cutting tools/engraving</li> <li>drill bit</li> <li>jewellery</li> <li>diamond very hard/strong</li> <li>attractive/lustrous</li> </ul>                                                                                                                                                                                                                                           |      |
|                 |             | high melting point                                                                                                                                                                                                                                                                                                                                                                            |      |
|                 |             | Explanations                                                                                                                                                                                                                                                                                                                                                                                  |      |
|                 |             | <ul> <li>giant molecular/covalent</li> <li>each carbon atom bonded to four other carbon atoms</li> <li>three dimensional structure</li> <li>to break it lots of bonds would need to be broken</li> <li>would need lot of energy/force</li> </ul>                                                                                                                                              |      |
|                 |             | Graphite:                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                 |             | Uses and Properties                                                                                                                                                                                                                                                                                                                                                                           |      |
|                 |             | <ul> <li>to make electrodes</li> <li>a lubricant</li> <li>sporting equipment</li> <li>in pencils/drawing</li> <li>graphite conducts electricity</li> <li>soft</li> </ul>                                                                                                                                                                                                                      |      |
|                 |             | Explanations                                                                                                                                                                                                                                                                                                                                                                                  |      |
|                 |             | <ul> <li>giant molecular/covalent</li> <li>each carbon atom bonded to three other carbon atoms</li> <li>each carbon atom has a free electron</li> <li>delocalised electrons</li> <li>(delocalised) electrons move to carry current</li> <li>layers of carbon atoms</li> <li>weak forces/bonds between layers/sheets</li> <li>so layers/sheets can slide/rub off or over each other</li> </ul> |      |
|                 |             |                                                                                                                                                                                                                                                                                                                                                                                               | (6)  |

| Question number | Answer                                                                                                                                                                                                                                                | Additional guidance                             | Mark |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------|
| 5(a)            | An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark):  • a negative ion must have more electrons than protons in the particle (1)  • therefore Z will have a 2– charge (1) | Do not allow any comparison involving neutrons. | (2)  |

| Question number | Answer                                  | Additional guidance                                            | Mark |
|-----------------|-----------------------------------------|----------------------------------------------------------------|------|
| <b>5</b> (b)    | 40 + 2 × (14 + 16 × 3) (1)<br>= 164 (1) | Award full marks for correct numerical answer without working. | (2)  |

| Question number | Answer                                                                                                                                                      | Mark |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>5</b> (c)    | <ul> <li>Li ion with empty outer shell (1)</li> <li>1+ charge on Li (1)</li> <li>8 electrons on outer shell of F (1)</li> <li>1- charge on F (1)</li> </ul> | (4)  |