| Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 1 (a)(i) | fractional distillation | | (1) | | Question
Number | Answer | Acceptable answers | Mark | | 1(a)(ii) | to make it liquid | liquefy/condense
to remove water (vapour)
to remove carbon dioxide | (1) | | Question
Number | Answer | Acceptable answers | Mark | | 1 (b) | D weak forces of attraction between the oxygen molecules | | (1) | | Question
Number | Answer | Acceptable answers | Mark | | 1(c)(i) | An description including shared (electrons) (1)pair(s) of electrons (between atoms) (1) | Ignore reference to complete/full shells Ignore reference to between two metals Ignore reference to between metal and non-metal Ignore reference to between molecules Any reference to between ions scores 0 | (2) | | Question
Number | Answer | Acceptable answers | Mark | | Question | Answer | Acceptable answers | Mark | |----------|--------|--------------------|------| | Number | | | | | 1(c)(ii) | 2.4 | | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--|------| | 1(c)(iii) | diagram showing any shared pair of electrons
between a carbon and oxygen
atom in CO₂ molecule (1) | Must have O C O arrangement If any atom labelled must be correct | | | | rest of molecule correct (1) | Ignore inner electrons even if wrong electrons can be on/in ring or no ring Ignore intersecting circles Accept all permutations of dots and crosses | (2) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--|------| | 2(a)(i) | particles are same size when they should be different sizes (1) model is in 2D but crystal is 3D (1) | Allow reverse statements giving correct information. | (2) | | Question number | Answer | Mark | |-----------------|---|------| | 2(a)(ii) | An explanation that combines identification – knowledge (1 mark) and reasoning/justification – understanding (2 marks): very strong bonds/ionically bonded (1) between 2+ cations and 2– anions (1) so requires lot of energy to separate magnesium and oxide ions to melt the solid (1) | (3) | | Question number | Answer | Additional guidance | Mark | |-----------------|--|------------------------|------| | 2 (b)(i) | $CaCO_3 + 2HCI \rightarrow CaCI_2 + H_2O$
+ CO_2
• all formulae on correct side (2)
• balancing (1) | Allow 3/4 formulae (1) | (3) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--|------| | 2(b)(ii) | relative formula mass copper carbonate $= 63.5 + 12.0 + (3 \times 16.0)$ $= 123.5$ relative formula mass copper oxide $= 63.5 + 16.0$ $= 79.5 (1)$ mass copper oxide $= \frac{15.0 \times 79.5}{123.5} = 9.7 \text{ g to 2 s.f. (1)}$ Answer must be to two significant figures | Award full marks for correct numerical answer without working. | | | | OR moles of copper carbonate $= \frac{15.0}{123.5} = 0.12145(1)$ mass of copper oxide $= \text{moles CuCO}_3 \times 79.5$ $= 9.7 \text{ g to 2sf (1)}$ Answer must be to two significant figures | | (2) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--|------| | 2 (c) | 2.4/24 moles Mg = 0.1 mol (1)
and 0.2 moles H_2O has mass
0.2 × formula mass H_2O = 3.6 g
(1)
total mass reactants = 2.4 + 3.6 =
6.0 g is the same as
total mass products = 5.8 + 0.2 = | Award full marks for correct numerical answer without working. | | | | 6.0 g (1) | | (3) | | Question | Answer | Acceptable answers | Mark | |-----------------|-----------|--------------------|------| | Number | | | | | 3(a)(i) | electrons | | (1) | | | | | | | Question | Answer | Acceptable answers | Mark | |----------|-------------------------------|--------------------|------| | Number | | | | | 3(a)(ii) | transition (metals/ elements) | transitional | (1) | | | | ignore transient | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|-------------------------------------|------| | 3 (b) | An explanation linking the following points • hydrogen chloride {soluble/dissolves} (in water) (1) | hydrogen chloride reacts with water | | | | forms hydrochloric acid (1) | | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--|------| | 3(c) | An explanation including two of the following points • (orange) colour due to bromine (1) | | | | | chlorine displaces bromine (1) | chlorine displaces bromide (ions) a displacement reaction (occurs)OWTE | | | | (because) chlorine is more reactive (than bromine) (1) | | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 3 (d) | A description including three of the following points | | | | | • mix solutions (1) | pour (both) solutions into {beaker/other suitable container} | | | | • filter (1) | ignore addition of hydrochloric acid | | | | wash (precipitate / solid)
with water (1) | | | | | dry (precipitate / solid) in
oven /leave to dry(1) | if wrong things mixed allow max 2 from last three points | (3) | | Question
Number | Answers | | | Acceptable Answers | Mark | |--------------------|---|-----------------------|-----------------------|--------------------|------| | 4 (a)(i) | number
of
protons
number
of | chlorine-
35
17 | chlorine-
37
17 | | | | | neutrons
number
of
electrons | 17 | 17 | | | | | the four 1 | | | | (2) | | Question
Number | Answers | Acceptable Answers | Mark | |--------------------|--|--|------| | 4 (a) (ii) | An explanation linking M1 average (mass of atoms/isotopes present) (1) M2 more chlorine-35 than chlorine-37 / higher {percentage / abundance} of CI-35 / lower {percentage / abundance} of CI-37 / (1) | mean ignore weight 75% chlorine-35 / 25% chlorine-37/ chlorine-35 and chlorine-37 in ratio 3:1 / correct calculation to obtain 35.5 | | | | | (2)
eg[(75x35) + (25x37)]/100 | (2) | | Question
Number | Answers | Acceptable Answers | Mark | |--------------------|--|--|------| | 4 (b) | Diagram showing one carbon and four chlorines | use of dots or crosses or mixture of both | | | | four pairs of electrons shared
between the carbon and
chlorine atoms (1) | ignore inner shells even if incorrect ignore symbols | | | | fully correct (1) | | (2) | | Questi
Numbe | | Indicative Content | Mark | |-----------------|-------------|---|------| | QWC | 4(c) | A response including some of the following points | | | | | Note: (carbon to carbon) strong bonds is given in question | | | | | Diamond: | | | | | Uses and Properties | | | | | in cutting tools/engraving drill bit jewellery diamond very hard/strong attractive/lustrous | | | | | high melting point | | | | | Explanations | | | | | giant molecular/covalent each carbon atom bonded to four other carbon atoms three dimensional structure to break it lots of bonds would need to be broken would need lot of energy/force | | | | | Graphite: | | | | | Uses and Properties | | | | | to make electrodes a lubricant sporting equipment in pencils/drawing graphite conducts electricity soft | | | | | Explanations | | | | | giant molecular/covalent each carbon atom bonded to three other carbon atoms each carbon atom has a free electron delocalised electrons (delocalised) electrons move to carry current layers of carbon atoms weak forces/bonds between layers/sheets so layers/sheets can slide/rub off or over each other | | | | | | (6) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|---|------| | 5(a) | An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): • a negative ion must have more electrons than protons in the particle (1) • therefore Z will have a 2– charge (1) | Do not allow any comparison involving neutrons. | (2) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--|------| | 5 (b) | 40 + 2 × (14 + 16 × 3) (1)
= 164 (1) | Award full marks for correct numerical answer without working. | (2) | | Question number | Answer | Mark | |-----------------|---|------| | 5 (c) | Li ion with empty outer shell (1) 1+ charge on Li (1) 8 electrons on outer shell of F (1) 1- charge on F (1) | (4) |