Question number	Answer	Additional guidance	Mark
$\mathbf{1 (a)}$	(annect ammeter in series (with thermistor)(1) connect voltmeter in parallel (with thermistor)(1) reverse (connections for) one of the cells (1)	allow idea that meters should be swapped for two marks (equivalent to first two points)	(3)
Question number	Answer	Additional guidance	Mark
$\mathbf{1 (b) (i)}$	Any one of the following reasons: - the thermistor and the water are at the same temperature (1) large volume of water gives a steady temperature rise (1)	accept idea that only small part of thermometer would be in contact with a thermistor in air accept difficult to control change in temperature of thermistor when heated in air	(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (b) (i i)}$	Any one of the following developments to the procedure: - add ice to increase lower limit of temperature range (1) use liquid with higher boiling point to increase upper limit of temperature range (1)	accept named liquid with higher boiling point, e.g. oil	(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (c) (i)}$	A comparison and contrast that must include at least one similarity and one difference from the following points to a maximum of three marks:	Similarities resistance of both changes with temperature (1) both graphs show a non-linear relationship (1) data comparison, e.g. both have the same resistance at $80^{\circ} \mathrm{C}$ (1)	

	Differences resistance of \mathbf{A} decreases with temperature but resistance of \mathbf{B} increases with temperature (1) for A, (largest slope/rate of change) is at lower temperature but for B, (largest slope/rate of change) is at higher temperature(s) (1) for \mathbf{B}, resistance is constant below $50^{\circ} \mathrm{C}$ but for \mathbf{A} resistance is roughly constant above $60^{\circ} \mathrm{C}$ (1)	accept (smallest slope/rate of change) for A is at higher temperature but (smallest slope/rate of change) for B is at lower temperature

Question number	Answer	Mark
1(c)(ii)	B	(1)

Question number	Answer	Additional guidance	Mark
2(a)	Rearrangement of equation (1) $Q=\frac{E}{V}$ Substitution including change of unit (1) $64 \mathrm{MJ}=64000$ 000 J Answer and unit (1) $Q=190000$ (C)	(1000 000 allow answers that round to 190 000, e.g. 193 939	if the calculation is worked throughout without changing MJ to J, then maximum of 2 marks unless unit matches quantity

Question number	Answer	Additional guidance	Mark
2(b)	Rearrangement (1) $I=\frac{Q}{t}$ Conversions and substitution (1) $190(\mathrm{kC})=190000(\mathrm{C})$ 8 hours $=8 \times 3600(s)=28800(s)$ $I=\frac{190000}{28800}$ Evaluation (1) $=6.6(\mathrm{~A})$	ecf from (a) (6.5972) if 193939 used then accept 6.7	(3)

Question number	Indicative content *2(c)Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. \quad AO1 (6 marks) the sequence of events is voltage change, conversion to direct current, followed by current limiting the battery is the load in the secondary circuit, not a store of energy for the primary circuit a transformer is needed to increase (or step up) the voltage so a diode is needed to change a.c. to d.c. the charging current can be limited to 15 A using a fuse (or circuit breaker) a circuit breaker may be preferable to a fuse, since a fuse would need to be replaced after use	Mark
the transformer primary coil is connected between the live and neutral in the primary circuit the diode is connected in the secondary circuit of the transformer the battery(which is to be charged), diode, fuse and secondary coil should be connected in series in the secondary circuit	(6)	

Level	Mark	Descriptor
Level 1	0	$1-2$
No awardable content.		
Level 2	$3-4$	Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) Presents an explanation with some structure and coherence. (AO1)
Level 3	$5-6$	Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) Presents an explanation that has a well- developed structure which is clear, coherent and logical. (AO1)		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (i)}$	A positive : equal (1)		(1)

Question Number	Answer	Acceptable answers	Mark
3(a)(ii)	An explanation linking	Any reference to positive charges, positive electrons or protons moving scores zero marks for question ignore contradictions to Q i.e. cloth is negatively charged	(2)
	negative charge(s)/electrons (1) (move/ transfer) \{to (plastic) rod / from cloth\} (1)	attract is insufficient for transfer e.g. \{rod /it\} gains/gets electrons (from cloth) for 2 marks the cloth loses electrons (to the rod) for 2 marks	

Question	Answer	Acceptable answers	Mark
Number			(1)
3(a)(iii)	B		

Questio \mathbf{n} Number	Answer	Acceptable answers	Mark
3(a)(iv)	a suggestion including:	Any reference to positive charges, positive electrons or protons moving scores zero marks for question accept the rod loses its charge/ electrons OR rod is 'earthed'/ 'grounded'	(1)
	plastic rod has \{become neutral/ discharged/no longer charged/not negatively charged (anymore) \}	OR ignore has same charge as water \{charge/electrons\} \{transferred/ taken\} from rod (to/by the water) (1)	the water removes/washes away the electrons/charge

Question Number	Answer	Acceptable answers	Mark
3(b)	Conversion to correct units: 120 seen anywhere (1) Substitution: $\begin{equation*} 0.08 \times 120 \tag{1} \end{equation*}$ Evaluation: 9.6 (C) (1) accept 10 C	Allow full marks for correct answer with no working seen. 0.08×2 gains 1 mark for sub of their time into correct eq'n 0.16 (C) gains 2 marks (only mistake is not converting time to seconds) accept any power of 10 error for 2 marks e.g. 960 (C)	(3)

