Question Number	Answe		Mark
$\mathbf{1 (a) (i)}$	Dthe spring has more elastic potential energy than the weight has kinetic energy		

Question Number	Answer	Acceptable answers	Mark
1(a)(ii)	A description including three from MP1 Elastic potential energy /EPE (in stretched spring) (1) MP2 (EPE is) transferred to KE (initially) (1) MP3 change from KE to GPE or vice versa(1) MP4 (correct idea of) energy changes continuing MP5 \{total mechanical energy /kinetic +potential energy \} decreases (continuously) (1) MP6 (Eventually all is transferred to) \{thermal/heat (energy) (1)	care should be taken not to award marks for contradictory examples Starting point for description does not matter I gnore sound energy EPE becomes/goes to KE (initially) condone amplitude decreases to zero KE or PE 'lost' to surroundings	(3)
Question Number	Answer	Acceptable answers	Mark
1(b)(i)	B increase the efficiency of the motorcycle		(1)

Question Number	Answer	Acceptable answers	Mark
1(b)(ii)	MP1 (bump produces) relative motion (1)	coil moves round magnet/magnet moves \{into/out of\} coil / coil \{cuts / moves across\} magnetic field ignore magnets slide inside a coil (see stem)	
MP2 (motion between magnet and coil) \{induces / (1) generates\} voltage (1)	electromagnetic induction condone \{induces / generates \}	\{current/ electricity \} ignore (see stem) electrical energy provides / produces	(2)

Question Number	Answer	Acceptable answers	Mark
1(b)(iii)	An explanation linking MP1 \{more/frequent $\}$ bumps (1) (idea of shorter time / increased frequency) MP2 (bigger bumps produce) bigger amplitude / move more up and down (idea of bigger size) MP3 (so) \{induced voltage /voltage generated\} is larger (1)	idea of up and down for bump (coil / magnets) move up and down \{faster / more often\} (coil/magnets) move \{further/higher/bigger distance\} (up and down) \{induced current/current generated \} is larger electromagnetic induction gives more voltage/current condone more electricity/ electrical energy is \{induced / generated\} allow once for MP1 (if MP1 or MP2 is not scored): 'bumpier' 'go in and out more'	(3)

(Total for Question 3 = 10 marks)

Question number	Ans		Mark
2(a)	evidence that anomalous reading excluded (1) answer (1) average length $=20.31(\mathrm{~mm})$	accept 101.57 ($\div 5$) for first mark accept 20.314 (mm)	(2)

Question number	Answer	Additional guidance	Mark
2(b)(i)	-Axes with linear scales that use more than half of each edge of the grid and labelled with units from table (1)	All points correctly plotted to \pm half a square (1) - Single straight line passing through all points and the origin (1)	allow 1 mark if only one plotting error and correct line drawn for points plotted

Question number	Answer	Additional guidance	Mark
2(b)(ii)	A comment that makes reference to the following points: (using table) idea that equal increments of force/weight/mass cause equal increments of extension (1) correct reference to figures in the table (1)	OR (using graph) the graph line is straight (1) the graph line passes through the origin (1)	AND therefore the student's conclusion is correct (1)
last marking point can only be	achieved if at least one of the other two marks is awarded	(3)	

Question number	Answer	Additional guidance	Mark
2(c)	An answer that combines points of interpretation/evaluation to provide a logical description: above 37.5 N/4 mm there are large increases of extension for small increases in load (1) the maximum extension of the wire is about 16.5 mm before it breaks (1) above 12 mm the wire keeps on extending when the load is reduced below $46 \mathrm{~N} \mathrm{(1)}$	accept extension is (much) greater for each 1 N increase in load above 37.5 N	

Question number	Ans guidance	Mark	
3(a)	evidence that anomalous reading excluded (1) evaluation (1) average length $=20.31(\mathrm{~mm})$	accept 101.57 ($\div 5)$ for first mark	

Question number	Answer	Additional guidance	Mark
3(b)(i)	Axes with linear scales that use more than half of each edge of the grid and labelled with units from table (1) All points correctly plotted to \pm half a square (1) Single straight line passing through all points and the origin (1)	allow 1 mark if only one plotting error and correct line drawn for points plotted	(3)
Question number	Answer	Additional guidance	Mark
3(b)(ii)	A comment that makes reference to the following points: (using table) idea that equal increments of force/weight/mass cause equal increments of extension (1) correct reference to figures in the table (1) OR (using graph) the graph line is straight (1) the graph line passes through the origin (1) AND therefore the student's conclusion is correct (1)	last marking point can only be achieved if at least one of the other two marks is awarded	(3)

Question number	Answer	Additional guidance	Mark
3(c)	An answer that combines points of interpretation/evaluation to provide a logical description: above $37.5 \mathrm{~N} / 4 \mathrm{~mm}$ there are large increases of extension for small increases in load (1) the maximum extension of the wire is about 16.5 mm before it breaks (1) above 12 mm the wire keeps on extending when the load is reduced below 46 N (1)	(much) greater for each 1 N increase in load above 37.5 N	

