Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (\mathbf { i })}$	solid	in either order plasma as an alternative to either.	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	C temperature of the gas measured in Kelvin		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i)}$	an explanation linking two of the following three points:- particles move (1) bombarding/colliding (1)	molecules/they move ignore 'pushing'	(2)
	with wall/side (1) (only give if one of the previous marks is there) (of container)	e.g. molecules push on walls $=0$ bounce off inside of container $=2$	

Question Number	Answer	Acceptable answers	Mark
1(b)(ii)	substitution $P_{2}=\frac{101000 \times 340}{2.5}$ (1) Evaluation 13.7 to any power of 10 (1) $13700000(\mathrm{~Pa}), 13700 \mathrm{kPa}$ (1)	$1.37(36) \times 10^{7} / 13736000$ 14 to any power of 10 $14000000(\mathrm{~Pa}), 14000$ (kPa) Full marks are awarded for the correct answer with no working	(3)

Total for Question 2 = 8 marks

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	volume in range $9.0-10.5 \quad\left(\mathrm{~cm}^{3}\right)$ (1) pressure in range $1.5-1.7 \quad(\mathrm{kPa})$ (1)		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i i)}$	\boxtimes D 296 K		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i i i)}$	Volume in range 4-8(cm $)$	Any value between 4 $\left(\mathrm{cm}^{3}\right)$ and $8\left(\mathrm{~cm}^{3}\right)$	
			(1)

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Answer } & \text { Acceptable answers } & \text { Mark } \\
\hline \mathbf{2 (a) (\text { iv) }} & \begin{array}{l}\text { Substitution (1) } \\
2.2 \times 10.8 \div 0.2\end{array} & \begin{array}{l}118.8\left(\mathrm{~cm}^{3}\right) \\
\text { Evaluation (1) } \\
119\left(\mathrm{~cm}^{3}\right)\end{array}
$$ \& \begin{array}{l}give full marks for the correct \\

answer, no working\end{array}\end{array}\right\}\) (2) | |
| :--- |

Question Number		Indicative Content ${ }^{\text {a }}$ Mark
QWC	*)	An explanation including some of the following points: particles in gas - move rapidly - throughout container - collide with each other - collide with walls/lid of container - exerting a force particles in solid - in fixed positions - vibrate - do not reach lid
Leve I	0	No rewardable content
1	1-2	- a limited explanation e.g. particles in the copper do not touch the lid / particles in the oxygen do touch the lid - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	3-4	- a simple explanation e.g. particles in a gas can move freely and collide with the lid - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy
3	5-6	- a detailed explanation e.g. particles in a gas can move freely and collide with the lid but particles in a solid vibrate about fixed positions so cannot reach the lid - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors

Question number	Answer	Additional guidance	Mark
3(a)(i)	In the solid box: regular arrangement and particles touching (1) In the liquid box: irregular arrangement and most particles touching (1) In the gas box: random and spaced (compared to liquid) (1)	ignore variation in particle size ignore arrows/lines indicating movement allow solid and liquid arrangements that do not fill the box	(3)
Question number	Answer		Mark
3(a)(ii)	C		(1)
Question number	Answer	Additional guidance	Mark
3(b)(i)	$\begin{aligned} & \text { substitution (1) } \\ & 100 \div 13 \\ & \\ & \text { answer }(1) \\ & 7.7\left(\mathrm{~g} / \mathrm{cm}^{3}\right) \end{aligned}$	award full marks for correct numerical answer without working allow $7.692\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$	(2)

Question number	Answer	Additional guidance	Mark
3(b)(ii)	An answer that provides a description by making reference to: e part fill a measuring cylinder with water and record the starting volume (1) completely immerse the stone in the water and record the final volume of water and stone (1) volume of stone $=$ final volume - initial volume (1)	accept valid alternative methods, e.g. fill a displacement can until some water overflows/flows out of spout	completely immerse the stone in the displacement can and collect the displaced water in a measuring cylinder
volume of water displaced $=$			
volume of stone			

Question number	Answer	Mark
4(a)(i)	pressure = force \div area	(1)

Question number	Answer	Additional guidance	Mark
4(a)(ii)	rearrangement (1) $(F=) P \times A$	award full marks for correct numerical answer without working calculation of area (1) $2.4 \times 1.5=3.6$ substitution (1) $(F=) 12000 \times 3.6$ answer (1) $43200(N)$	not converted to Pa

Question number	Answer	Mark
4(a)(iii)	B	(1)

Question number	Answer	Mark
4(b)	An answer that combines the following points to provide a plan: put weights on the plunger to increase the pressure of the trapped air (1) use scale on syringe to measure the volume of trapped air (1) calculate the pressure from P = weight added/area of plunger (1) compare the increase in pressure to the volume of trapped air (1)	(4)

