Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a)}$	D		(1)

Question Number	Answer	Acceptable answers	Mark
1(b)	A description including two of the following - (bat) emits /sends /makes (ultra) sound /it / signal/wave(1) - signal/wave /(ultra)sound reflects/bounces(back)/ rebounds (off moth/prey) (1) - bat's (ears) detect reflected (ultra) sound (1) - reflection is used to estimate distance (to moth) (1)	On diagram idea of something emitted e.g. line (with arrow) from anywhere on /near bat or outgoing waves On diagram idea of something reflected e.g. line with arrow from anywhere on /near moth or reflected waves (from moth) idea of reflection detected e.g. bat hears the reflected (ultra)sound/ wave/ signal idea of bat analyses data e.g. bat times how long (it takes) for reflected wave to get back I gnore idea that it listens for noises from prey	(2)

Question Number		Indicative content	Mark
QWC	* 1(c)	A description linking some of the following - ultrasound does not cause damage to (healthy) cells / ORA - idea of real-time image with ultrasound - ultrasound uses non-ionising radiation - idea that (consultant) can change image position during ultrasound scan - 3D image possible with ultrasound - ultrasound safer for consultant - ultrasound machines more portable - ultrasound can be used to measure blood flow rates - ultrasound gives detail of soft tissue - X-rays are more suitable for bony structures - X-rays produce higher resolution images - X- rays are more suitable for parts of body containing gas (lungs, intestines) This list is not exhaustive. Give credit for other plausible suggestions	(6)
Level	0	No rewardable material	
1	1-	- a limited description with no comparison or contrast ie describes a use/fact about ultrasound OR X-rays eg Ultrasound can be used to look at a foetus (unborn child) - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy	
2	3-	- a description giving some attempt at comparison or contrast describes a use of ultrasound AND X-rays eg Ultrasound can be used to look at a fetus. X-rays are used detect broken bones OR Ultrasound can be used to look at a fetus because it's sa (than X-rays) - the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accu	ie do er larity y racy
3	5-6	- a detailed description with clear comparison and/or contrast describes a use of ultrasound AND X-rays, one of which is detailed, AND a clear comparison Ultrasound can be used to monitor a fetus. In ultrasound th waves reflect off soft tissue. X-rays (are used to look at bon because they) are absorbed by bones OR Ultrasound can be used to monitor a fetus. In ultrasoun waves reflect off soft tissue. X-rays are used to look at bone not used for fetus because they can damage DNA/cause mu of cells - the answer communicates ideas clearly and coherently uses range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	ie s the but ations a

Question Number	Answer	Acceptable answers	Mark
1 (d)	```substitution (1) \(5000 \times 0.000003\) evaluation (1) 0.015 (m) evidence of dividing by 2 (1) (5000 \(\div 2\)) x 0.000003 \(7.5 \times 10^{-3}(\mathrm{~m}) \quad\) scores 3 marks```	ignore powers of 10 until evaluation e.g. 5000×0.0003 etc \quad gains 1 mark or $.15 / 1.5 / 15$ etc mark $1.5 \times 10^{-2} / 0.015$ gains 1 $7.5 / 0.75 / 0.075$ etc 20.0075 (marks scores 3 marksgive full marks for correctanswer, no working	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a)}$	D		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i)}$	(sudden) decrease in speed	refraction / change direction	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i)}$	a description linking	accelerates	
	- the (speed) increases (1)		
	- as depth increases (1)	travels further into the mantle / material becomes more dense - linearly (1) - from 11.8 to $14(\mathrm{~km} / \mathrm{s})(1)$	from from >11 and <12 to >13 and <14
	- by 2.2	2 to 3	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i i)}$	substitution (1) $12=5800 \div \mathrm{t}$ transposition (1) $\mathrm{t}=5800 \div 12$ evaluation (1) $480(\mathrm{~s})$	Substitution and transposition can be in either order	
		8 minutes A value which correctly rounds to 480 give full marks for correct answer, no working	(3)

Question Number	Answer	Acceptable answers	Mark
2(c)	an explanation linking - impossible to predict earthquakes (1) with one of - (because) no pattern to \{results/forces $\}$ (1) - (because) not able to predict force needed to make block start sliding (1) - the movement of (tectonic) plates is similar to the movement of the block (over the rough surface)	difficult to predict results \{(very) different/not (very) close/not concordant $\}$ as force needed for plates to start sliding is unpredictable (ignore references to strength of earthquake)	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 ~ (a i)}$	D ultrasound waves (1)		(1)

Question Number	Answer	Acceptable answers	Mark
3 (aii)	Any 3 from - emits (high frequency/ultra) (sound)(1) - (sound is) reflected (off fish) (1) - (reflection) detected by Dolphin (1) - dolphin (estimates) time between (sending and receiving) sounds (1) - dolphin is able to change time into (estimate of) distance (1)	Makes/sends out/produces (ultra sound/signal/wave) Uses 'high frequency sound' is insufficient (sound) bounces off (fish) or echoes towards dolphin $1^{\text {st }}$ three marks can be scored on the diagram. ie unless stated otherwise, assume any waves/rays starting at dolphin are ultrasound. Rays do not need to be straight	(3)

Question Number	Answer	Acceptable answers	Mark
3 (b)	An explanation including: - Infrasound (1) Plus one from: - Decrease/change in amplitude is least (1) - can be detected/'heard' further away (1)	Marks are independent Stays the biggest/stays high. Has a bigger amplitude would travel the furthest/further	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3}(\mathbf{c i})$	B seismic waves (1)		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3}$ (cii)	(there is a) difference/change in density (1)	more/less/too dense (reach a) boundary (between different materials) Ignore 'the waves cannot travel through liquids/oil'	(1)

Question Number	Answer	Acceptable answers	Mark
3 (d)	Substitution into correct equation(1) $v=15 \times 125$ Evaluation (1) 1875 Unit (1) m / s	Power of 10 error max 1 mark for numerical answer 2 marks for correct numerical answer even with no working shown ms^{-1} not mps $1.875 \mathrm{~km} / \mathrm{s}$ or $6750 \mathrm{~km} / \mathrm{h}$ gain 3 marks If numerical answer incorrect, accept any correctly-written unit of speed: eg $\mathbf{k m} / \mathrm{s}$ or $\mathrm{km} / \mathrm{hr}$ or miles per hour / mph	(3)

Total for Question $4=11$ marks

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (i)}$	D		(1)

Question Number	Answer	Acceptable answers	Mark
4(a)(ii)	moons (1)		
heliocentric (1)	must be in correct order		

Question Number	Answer	Acceptable answers	Mark
4(a)(iii)	A description including two of the following points Reflecting telescope has mirror(s) (1) Galilean telescope has only lenses (1) Reflecting telescope can gather more light / can have a larger objective (1) Image viewed from the side of reflecting telescope (1) Image viewed from end of Galilean telescope. (1)	refracting telescope	(2)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	$5(\mathrm{~cm})(1)$	+5	
		-5	(2)
	$8(\mathrm{~cm}) \quad(1)$	0.08 m 80 mm	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (b) (i i)}$	B		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a i)}$	A		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a i i)}$	A description linking	(2) (relates move / slip / separate	plate rubs against each other friction between plates plate boundary shifts jerk / jolt

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (b i)}$	substitution (1) $0.65=80 / \mathrm{t}$	transposition and substitution can be in either order Allow reverse calculations eg speed $=80 / 120(1)$ $=0.67($ about 0.65$)(1)$	(2)
	transposition (1) $\mathrm{t}=80 / 0.65$ $(123$ seconds) distance $=0.65 \times 120(1)$ $=78 \mathrm{~km}($ about 80$)(1)$.		

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{5 (b i i)}$	A description linking any three	Reward suitable labelled diagram	(3)		
detection of arrival of P and S					
waves (1)					
measurement of difference in					
arrival times (1)					
calculation of distance (from					
epicentre to station) (1)					
triangulation/using three /					
several stations (1)				\quad	(3)
:---					

Question Number	Answer	Acceptable answers	Mark
5(b)(iii)	A suggestion including any two of the following Infrasound (1) some animals can hear waves below human frequency range / $20 \mathrm{~Hz} \mathrm{(1)}$ they could hear P waves arriving before the (stronger) S waves arrive (1)	Some animals have greater audio / tactile sensitivity than humans	(2)

