A-level
BIOLOGY
7402/2
Paper 2

Mark scheme

June 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Mark scheme instructions to examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded.

The extra information in the 'Comments' column is aligned to the appropriate answer in the lefthand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening

2.1 In a list of acceptable answers where more than one mark is available 'any two from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.
2.3 Alternative answers acceptable for the same mark are indicated by the use of OR. Different terms in the mark scheme are shown by a / ; eg allow smooth / free movement.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error / contradiction negates each correct response. So, if the number of errors / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (often prefaced by 'Ignore' in the 'Comments' column of the mark scheme) are not penalised.

3.2 Marking procedure for calculations

Full marks can be given for a correct numerical answer, without any working shown.
However, if the answer is incorrect, mark(s) can usually be gained by correct substitution / working and this is shown in the 'Comments' column or by each stage of a longer calculation.

3.3 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.4 Errors carried forward, consequential marking and arithmetic errors

Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation ECF or consequential in the mark scheme.
An arithmetic error should be penalised for one mark only unless otherwise amplified in the mark scheme. Arithmetic errors may arise from a slip in a calculation or from an incorrect transfer of a numerical value from data given in a question.

3.5 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited unless there is a possible confusion with another technical term.

3.6 Brackets

(....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.7 Ignore / Insufficient / Do not allow

Ignore or insufficient is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.
Do not allow means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded.
$\left.\begin{array}{|l|l|l|l|}\hline \text { Question } & \text { Marking Guidance } & \text { Mark } & \text { Comments } \\ \hline \hline & \begin{array}{l}\text { 1. (Colonisation by) pioneer species; } \\ \text { 2. Pioneers/species/organisms change the } \\ \text { environment/habitat/conditions/factors; } \\ \text { 3. (Environment becomes) less hostile for } \\ \text { other/new species } \\ \text { OR }\end{array} & 4 \text { max } \\ \text { (Environment becomes) more suitable for } \\ \text { other/new species } \\ \text { OR } \\ \text { (Environment becomes) less suitable for } \\ \text { previous species; } \\ \text { 4. Change/increase in diversity/biodiversity; } \\ \text { 5. (To) climax community; }\end{array} \quad \begin{array}{l}\text { 2. Accept example of } \\ \text { change e.g. forms } \\ \text { soil/humus/organic } \\ \text { matter/nutrients. }\end{array}\right\}$

01.2	$0.155 ;$	1	Accept standard form e.g. 15.5×10^{-2}

01.3	1. Answer of $180 / 178 / 177.5=\mathbf{2}$ marks;; 2. Incorrect answer but shows use of numbers 57 and 127 (with decimal points in any position) within the calculation = 1 mark;	2	1. Ignore any numbers following 177.5

Question	Marking Guidance	Mark	Comments
02.1	1. Change in (sequence of) amino acid(s)/primary structure; 2. Change in hydrogen/ionic/disulfide bonds; 3. Alters tertiary $/ 3^{0}$ structure;	3	1. Reject amino acids are formed. 1. Reject amino acids code. 3. Reject active site. 3. Ignore quaternary. 3. Ignore 3D.
02.2	1. Produce healthy (red blood) cells OR Produce (normal) polypeptide/haemoglobin; 2. No sickle/faulty/SCD (red blood) cells (produced) OR No defective polypeptide/haemoglobin; 3. Stem/marrow cells (continuously) divide/replicate OR Less chance of rejection (from brother/sister);	3	1. Produce only healthy (red blood) cells is only equivalent to mark point 1. 1. Accept produce 'normal'/non-SCD cells. 1. and 3. Ignore type of stem cell e.g. pluripotent. 3. Differentiate is not equivalent to divide/replicate.

02.3	(For gene therapy)	3 max	Max 2 marks for
	1. No destruction of bone marrow		marking points 1, 2 and 3
	OR		1. Accept no
	No destruction of stem cells;		bone marrow unless
	2. Donors are not required;		is against gene therapy.
	3. Less/no chance of rejection (own stem cells); (Against gene therapy)		2. Stating 'only own
	4. Sickle/faulty (red blood) cells still produced		equivalent.
	5. Immune response against genetically modified cells/virus		5. Accept 'virus could cause problems' or 'risk(s) with virus'.
	OR		
	Long-term effect not known (as is new treatment)		
	OR		
	Virus could cause side effects;		

Question	Marking Guidance	Mark	Comments
03.1	1. Tip produces IAA; 2. Affects concentration of IAA OR Affects (shoot) length/growth/elongation; 3. Mitosis/division occurs in shoot tips; 4. Affects (shoot) length/growth/elongation;	2 max	Mark in pairs 1 and 2 or 3 and 4. 1 and 2. Accept auxin for IAA. 1. Ignore contains/stores IAA. 1. Accept affects amount of IAA. 2. Accept affects independent variable. 2 and 4. Ignore affects results.

\(\left.$$
\begin{array}{|c|l|c|l|}\hline & & 2 & \begin{array}{l}\text { 1.Ignore } \\
\text { photosynthesis. } \\
\text { 1. Ignore } \\
\text { aerobic/anaerobic }\end{array}
$$

(respiration).\end{array}\right\}\)| 1. Reject glucose |
| :--- |
| used in |
| photosynthesis. |
| 1. For respiration; |
| 2. Provide ATP/energy (for growth); |

	1. To prevent/reduce evaporation; 2. (Which) alters concentration of (IAA) solution 03.3	2	1. Accept evaporation of (IAA/glucose) 'solution'.
	OR		2. Accept auxin for IAA.
(Which) alters water potential;		1. Ignore contamination.	

	1. Increase in IAA concentration the higher/greater the $\underline{\text { mean }}$ (change in) length;	3	1,2 and 3. Accept auxin for IAA.
2. (High) IAA stimulates $\underline{\text { cell elongation; }}$3. In roots, growth/elongation less/inhibited;	3. Accept decrease in (mean) change in length but reject decreases length' on its own.		

			3. Accept 'opposite results or 'negative correlation'.
03.5	0.4 and 39.6;	1	Both numbers required and must be in order shown.

Question	Marking Guidance	Mark	Comments
04.1	1. Lower (force of contraction) in mouse/B (than control/ 100%) below $29^{\circ} \mathrm{C}$ OR Lower (force of contraction) in rabbit/D (than control/ 100%) below $26.5^{\circ} \mathrm{C}$; 2. Higher (force of contraction) in mouse/B (than control/ 100%) above $29^{\circ} \mathrm{C}$ OR Higher (force of contraction) in rabbit/D (than control $/ 100 \%$) above $26.5^{\circ} \mathrm{C}$; 3. Only (used) mouse and rabbit OR No other organism/species used; 4. Body temperature of mouse/rabbit higher (than temperatures investigated); 5. Only used one/ 0.5 pH (below typical pH) OR (Should) use more pH values; 6. (Used) isolated muscle tissue; 7. No stats test to see if (difference is) significant;	4 max	1. Accept any temperature below 29 ${ }^{\circ} \mathrm{C}$ for mouse/B or any specified temperature below $26.5^{\circ} \mathrm{C}$ for rabbit/D. 2. Accept any temperature above 29 ${ }^{\circ} \mathrm{C}$ for mouse/B or any temperature above $26.5^{\circ} \mathrm{C}$ for rabbit/D. 1. and 2. Accept 27 ${ }^{\circ} \mathrm{C}$ for $26.5^{\circ} \mathrm{C}$ and accept $28.5^{\circ} \mathrm{C}$ for 29 ${ }^{\circ} \mathrm{C}$. 3. Accept only two animals/species used. 4. Accept body temperature of mouse/rabbit not known 7. Ignore SD.
04.2	1. (Less/No) tropomyosin moved from binding site OR Shape of tropomyosin not changed so binding site not exposed/available; 2. (Fewer/No) actinomyosin bridges formed; 3. Myosin head does not move OR Myosin does not pull actin (filaments) OR (Less/No) ATP (hydrol) ase (activation);	3	1 and 2. Reject active site only once. 1. Ignore troponin. 2. Accept actin and myosin do not bind. 3. Reject ATP synthase. Do not penalise reference to calcium rather than calcium ions. Credit all mark points even if context relates to what happens when calcium ions are present.

\(\left.$$
\begin{array}{|c|l|c|l|}\hline \hline 04.3 & \begin{array}{l}\text { 1. Regenerates/produces NAD } \\
\text { OR } \\
\text { oxidises reduced NAD; } \\
\text { 2. (So) glycolysis continues; }\end{array} & 2 & \begin{array}{l}\text { 1. Reject NADP and } \\
\text { any reference to FAD. } \\
\text { 1. Accept descriptions } \\
\text { of oxidation e.g. loss } \\
\text { of hydrogen. }\end{array}
$$

2. Accept description

of glycolysis e.g.

glucose to pyruvate.\end{array}\right\}\)| 2. Accept 'for |
| :--- |
| oxidising/converting |
| triose phosphate to |
| pyruvate'. |

Question	Marking Guidance	Mark	Comments
05.1	1. (Attaches to receptors on target cells and) activates/stimulates enzymes;	2	1. Reject 'produces enzymes'.
		2. Reject 'glucagon converts' as context suggests enzyme action.	

	1. Correct answer of $3.24=\mathbf{2}$ marks;; 2. Incorrect but multiplies by 34 (with decimal point in any position) = 1 mark OR	2	
	Incorrect but shows sequence $324=\mathbf{1}$ mark OR $3.2=\mathbf{1}$ mark;		

$\left.\begin{array}{|l|l|c|l|}\hline & \begin{array}{l}\text { 1. (More) insulin binds to receptors; } \\ \text { 2. (Stimulates) uptake of glucose by } \\ \text { channel/transport proteins } \\ \text { OR }\end{array} & \begin{array}{l}\text { Activates enzymes which convert glucose to } \\ \text { glycogen; }\end{array} & \begin{array}{l}\text { 2. Accept activates } \\ \text { enzymes for } \\ \text { glycogenesis. }\end{array} \\ 05.3 & & \begin{array}{l}\text { 2. Reject active } \\ \text { transport. }\end{array} \\ \text { 2. Accept carrier } \\ \text { proteins or GLUT 4 } \\ \text { for channel proteins. } \\ \text { 2. Accept insulin } \\ \text { stimulates addition of } \\ \text { channel proteins in } \\ \text { membranes. }\end{array}\right\}$

05.4	$\begin{array}{l}\text { 1. Less/no ATP is converted to cyclic AMP/cAMP; } \\ \text { 2. Less/no kinase is activated; } \\ \text { 3. Less/no glycogen is converted to glucose } \\ \text { OR } \\ \text { Less/no glycogenolysis; }\end{array}$	3	$\begin{array}{l}\text { If no indication of } \\ \text { less/no for any of the } \\ \text { mark points award } \\ \text { max 2 marks. }\end{array}$		
Ignore					
gluconeogenesis.				$]$	
:---					

Question	Marking Guidance	Mark	Comments
06.1	GgX $\mathrm{K}^{\mathrm{r}} ;$	1	1. Accept alleles in any order. 1. Accept GgRr with alleles in any order.
06.2	If it were recessive all flies of 3 and 4 would be grey OR 3 and 4 produce 9/black (fly) OR Grey parents produce black (fly);	1	

$\left.\begin{array}{|c|l|l|l|}\hline 06.3 & \begin{array}{l}\text { 1. (Fly) } 3 \text { (and 4) produce 9/black (fly) } \\ \text { OR } \\ \text { (Fly) } 9 \text { would not be black } \\ \text { OR } \\ \text { (Fly) } 9 \text { would be grey } \\ \text { OR } \\ \text { Grey parents/male produce black female (fly); } \\ \text { 2. (Fly) } 3 \text { would pass dominant allele to 9; } \\ \text { 3. (Fly) } 2 \text { (and 1) produce 5/grey (fly) } \\ \text { OR } \\ \text { Black female produces grey male }\end{array} & \begin{array}{l}\text { Mark in pairs } 1 \text { and } 2 \\ \text { or } 3 \text { and 4. } \\ \text { 2. Accept allele for } \\ \text { grey colour would be } \\ \text { passed on by 3. }\end{array} \\ \text { OR max } \\ \text { (Fly) } 5 \text { could not be grey } \\ \text { OR } \\ \text { (Fly) } 5 \text { would be black; } \\ \text { 4.(Fly) } 5 \text { would receive recessive allele from 2; }\end{array} \quad \begin{array}{l}\text { 4. Accept allele for } \\ \text { black colour would be } \\ \text { passed on by 2. }\end{array}\right\}$

06.4	1. $G g X^{r} X^{r}$ and $g g X^{R} Y$; 2. $G g X^{R} X^{r}, g g X^{R} X^{r}, G g X^{r} Y$ and $g g X^{r} Y$; 3. Grey-bodied red-eyed female, black-bodied red-eyed female, grey-bodied white-eyed male, black-bodied white-eyed male and ratio 1:1:1:1;	3	1 and 2. Accept the following alternative notations for sexlinked crosses e.g. for mp 1 Ggrr and ggRY or Ggrr and gg R- or Ggrr and ggR i.e. space for Y

| | If 1, 2 and 3 incorrect allow one mark for correct
 gametes from incorrect dihybrid parental
 genotypes. | chromosome.
 2 and 3. Accept any
 order of genotypes
 and phenotypes.
 3. Accept sequence of
 phenotypes does not
 need to mirror
 genotypes but must
 be correct. |
| :--- | :--- | :--- | :--- |
| 3. Accept alternative
 ratios in correct
 proportions e.g.
 $4: 4: 4: 4$ | | |

06.5

1. Correct answer of $48 \%=\mathbf{2}$ marks;;
2. Incorrect answer but shows understanding that
$2 \mathrm{pq}=$ heterozygous/carriers = $\mathbf{1}$ mark
OR
3. Accept 0.48 for 1 mark.
4. Accept understanding of $2 p q$

Incorrect answer but shows understanding that by using a calculation involving $2 \times$ two different numbers.

Question	Marking Guidance	Mark	Comments

07.1	Ø NADP, ADP, Pi and water;	1	
07.2	1. Chlorophyll absorbs light OR Light excites/moves electrons in chlorophyll; 2. Electron/s are lost OR (Chlorophyll) becomes positively charged;	2	1. Ignore photosystems. 2. Ignore site/molecule from where electrons are lost. 2. Accept electrons go to electron transport/carrier chain for 'electrons lost'.

07.3	Ink and (leaf) pigments would mix	1	
	OR (With ink) origin/line in different position OR (With pencil) origin/line in same position OR (With pencil) origin/line still visible;		

\(\left.$$
\begin{array}{|c|l|c|l|}\hline 07.4 & \begin{array}{l}\text { 1. Level of solvent below origin/line; } \\
\text { 2. Remove/stop before (solvent) reaches top/end; }\end{array} & 2 & \begin{array}{l}\text { 1. Reject water or any } \\
\text { named aqueous } \\
\text { solution. }\end{array}
$$

1. Accept named

organic solvent.\end{array}\right]\)| |
| :--- |

07.5	Accept any answer in range of 0.58 to $0.62 ;$	1	Accept 0.58 or 0.62. Ignore any numbers which follow numbers in range.

07.6	(Absorb) different/more wavelengths (of light) for photosynthesis;	1	Accept wider/larger range of wavelengths. Accept frequency for wavelength.

Question	Marking Guidance	Mark	Comments

08.1	1. (Short) single strand of DNA; 2. Bases complementary (with DNA/allele/gene);	2	

08.2	1. Restriction endonuclease/enzyme; 2. (Cuts DNA at specific) base sequence OR (Breaks) phosphodiester bonds OR (Cuts DNA) at recognition/restriction site;	2	2. Accept palindromic sequence.

08.3	(So DNA) probe binds/attaches/anneals;	1	
08.4	1. (Lane 1 has DNA fragments) of known sizes/lengths; 2. Compare (position of viral fragment/s);	2	

08.5	$3,4,5$ with these numbers in any sequence;	1	All three numbers required. Reject if more than three numbers given.

Question	Marking Guidance	Mark	Comments
09.1	1. Use a grid OR Divide area into squares/sections; 2. Method of obtaining random coordinates/numbers e.g. calculator/computer/random numbers table/generator; 3. Count number/frequency in a quadrat/section; 4. Large sample and calculate mean/average number (per quadrat/section); 5. Valid method of calculating total number of sundews, e.g. mean number of plants per quadrat $/$ section $/ \mathrm{m}^{2}$ multiplied by number of quadrats/sections $/ \mathrm{m}^{2}$ in marsh;	5	1. Accept use of tape measures/map/area with coordinates. 1. Accept Belt transect. 2. If transect method used accept quadrats at regular intervals or current mark point 2. 3. Accept \% cover in quadrat/section. 3. Ignore amount/abundance. 4. Accept large sample and calculate mean \%. 4. Accept large sample and method of calculating mean. 4. Accept many/multiple for large sample but ignore several. 4.If a specific number is given it must be 10 or more. 5. Do not allow 'scale up' without further qualification. 5. Do not award if \% cover determined.
09.2	1. Digestion/breakdown of proteins; 2. Provides amino acids OR (Sundew can) produce a named (organic) nitrogen-containing compound e.g. proteins, amino acids, DNA, ATP; 3. Digestion/breakdown of named (organic) phosphate-containing compound e.g. DNA, RNA; 4. Provides named (organic) phosphate-containing product e.g. nucleotides	2 max	Mark in pairs 1 and 2 , or 3 and 4. Ignore carbohydrates, lipids or named carbohydrate/ lipid. 2. Ignore if nitrate or ammonium ions given as products. 4. Accept phosphate as a named product.

| | OR
 (Sundew can) produce a named phosphate-
 containing compound e.g. ATP, DNA; | |
| :--- | :--- | :--- | :--- |

Question	Marking Guidance	Mark	Comments
10.1	1. (Refers to) saltatory conduction OR (Nerve) impulses/depolarisation/ions pass to other neurones OR Depolarisation occurs along whole length (of axon); 2. (Nerve) impulses slowed/stopped; 3. (Refers to) neuromuscular junction OR (Refers to) sarcolemma;	3	1. Accept suitable description that refers to (transmission) from node to node (of Ranvier). 1 and 2. Accept action potentials for impulses. 1. Accept action potential for depolarisation. 1, 2 and 3. Reject first mark awarded if answer refers to messages/signals for impulses. Reject even if impulse/s also referred to.

10.2	1. Slower/fewer impulse(s) along sympathetic/parasympathetic (pathway/neurones);	3	1. Accept action potentials for impulses. 2. (Impulses) from cardiac centre OR (Impulses) from medulla; 3. To SAN;
10.3	1. It/DNA is complementary to impulses. (m)RNA; 2. Binds to mRNA (for huntingtin); 3. Prevents translation;	1, 2 and 3. Ignore information' but reject first mark awarded if answer refers to messages/signals for impulses. Reject even if impulse/s also referred to.	(m)RN.

\(\left.$$
\begin{array}{|c|l|l|l|}\hline 10.4 & \begin{array}{l}\text { 1. Small sample size } \\
\text { OR } \\
\text { Only 46; } \\
\text { 2. Only four-months } \\
\text { OR } \\
\text { short period (of trial); } \\
\text { 3. Huntingtin/protein reduced } \\
\text { OR } \\
\text { Huntingtin/protein still produced } \\
\text { OR } \\
\text { Huntingtin/protein not removed; } \\
\text { 4. Allele/gene/mutation/mRNA (for } \\
\text { Huntington's) still present } \\
\text { OR }\end{array} & \begin{array}{l}\text { 3. Accept huntington for } \\
\text { huntingtin. } \\
\text { Ignore }\end{array}
$$

miRNA/siRNA/transcriptional

factors.\end{array}\right] .\)| (May be) temporary |
| :--- |
| OR |
| Drug treatment repeated; |
| 5. Brain already damaged |
| OR |
| Brain damage may continue; |

10.5	1. (Drug/DNA) will directly/quickly reach brain OR (Cerebrospinal) fluid bathes the brain; 2. (Drug/DNA) not destroyed by acid OR	2	2. Reject protein is digested. 2. Ignore location of enzymes. 2. Accept Drug/DNA denatured.
10.6	(Drug/DNA) not digested (by enzymes);	1. (Increased) methylation of DNA/gene/allele; 2. Inhibits/prevents transcription; OR	2 max

	3. Decreased methylation of DNA/gene/allele; 4. Stimulates/allows transcription; OR 5. Decreased acetylation of histone(s); 6. Inhibits transcription; OR 7. Increased acetylation of histone(s); 8. Stimulates/allows transcription;	1. Reject acetylation of DNA. Accept gene expression for transcription but ignore gene switched on/off. lgnore methylation of histones. Accept DNA-histone complex as equivalent to histone(s).

