Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Tuesday 2 June 2020

Afternoon

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
TOTAL		

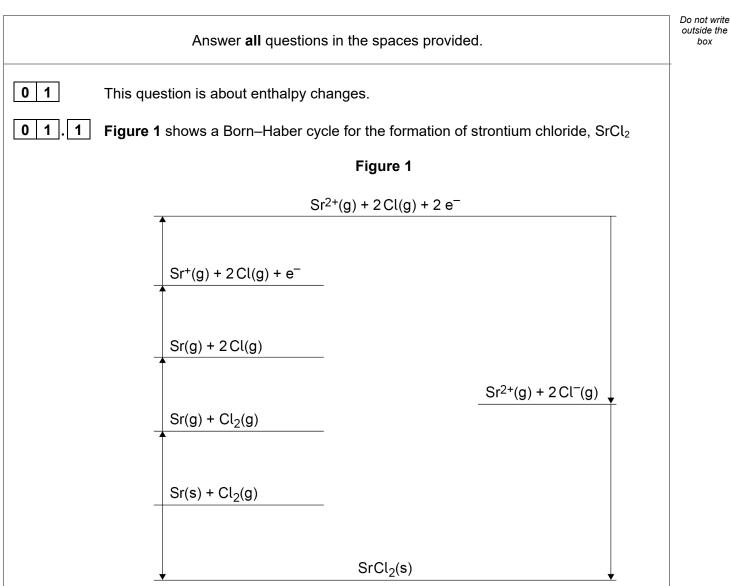


Table 1 shows some thermodynamic data.

Table 1

	Enthalpy change / kJ mol ⁻¹
First ionisation energy of strontium	+548
Second ionisation energy of strontium	+1060
Enthalpy of atomisation of chlorine	+121
Enthalpy of atomisation of strontium	+164
Enthalpy of formation of strontium chloride	-828
Enthalpy of lattice formation of strontium chloride	-2112

	Use the data in Table 1 to ca	lculate a value for the electron affi	inity of chlorine. [3 marks]
		ctron affinity	kJ mol ^{_1}
0 1 . 2	Draw a line from each substa	ince to the enthalpy of lattice form Entha forma	ation of that substance. [1 mark] alpy of lattice tion / kJ mol ⁻¹
	MgCl ₂		-2018
	MgO		-2493
	BaCl ₂		-3889
	Question 1 c	ontinues on the next page	

	Table 2				
	Т	heoretical	Experimenta	ıl	
Enthalpy of lattice formation / kJ mol-	-1	-770	-905		
State why there is a difference betwee	en the theoreti	ical and exper	imental values. [1 n	nark	
Table 3 shows enthalpy of hydration values for ions of some Group 1 elements. Table 3					
	Table 3				
	Table 3 Li ⁺ (g)	Na⁺(g)	K ⁺ (g)	7	
Enthalpy of hydration / kJ mol ⁻¹ Explain why the enthalpy of hydration	Li⁺(g) –519	-406	-322 rom Li ⁺ to K ⁺		
	Li⁺(g) –519	-406	-322	arks	
	Li⁺(g) –519	-406	-322 rom Li ⁺ to K ⁺	arks	
	Li⁺(g) –519	-406	-322 rom Li ⁺ to K ⁺	arks	
	Li⁺(g) –519	-406	-322 rom Li ⁺ to K ⁺	arks	

0 1 . 5 Calcium bromide dissolves in water.

Table 4 shows some enthalpy data.

Table 4

	Enthalpy change / kJ mol ⁻¹
Enthalpy of solution of calcium bromide	-110
Enthalpy of lattice formation of calcium bromide	-2176
Enthalpy of hydration of calcium ions	-1650

Use the data in **Table 4** to calculate the enthalpy of hydration, in kJ mol⁻¹, of bromide ions.

[3 marks]

Enthalpy of hydration of bromide ions kJ
--

Turn over for the next question

Turn over ►

				Do not write outside the
02	This question is about the isotopes of	chromium.		box
02.1	Give the meaning of the term relative	atomic mass.	[2 marks]	
02.2	A sample of chromium containing the relative atomic mass of 52.1	isotopes ⁵⁰ Cr, ⁵² Cr and ⁵³ Cr has a		
	The sample contains 86.1% of the 52 C	Cr isotope.		
	Calculate the percentage abundance	of each of the other two isotopes.	[4 marks]	
	Abundance of ⁵⁰ Cr	% Abundance of ⁵³ Cr	%	

02.3	State, in terms of the numbers of fundamental particles, one similarity and one difference between atoms of ⁵⁰ Cr and ⁵³ Cr [2 marks]	Do not write outside the box
	Similarity	
	Difference	
02.4	The sample of chromium is analysed in a time of flight (TOF) mass spectrometer. Give two reasons why it is necessary to ionise the isotopes of chromium before they can be analysed in a TOF mass spectrometer. [2 marks]	
	1 2	
	Question 2 continues on the next page	

0 2. **5** A 53 Cr⁺ ion travels along a flight tube of length 1.25 m The ion has a constant kinetic energy (*KE*) of 1.102×10^{-13} J

$$KE = \frac{mv^2}{2}$$

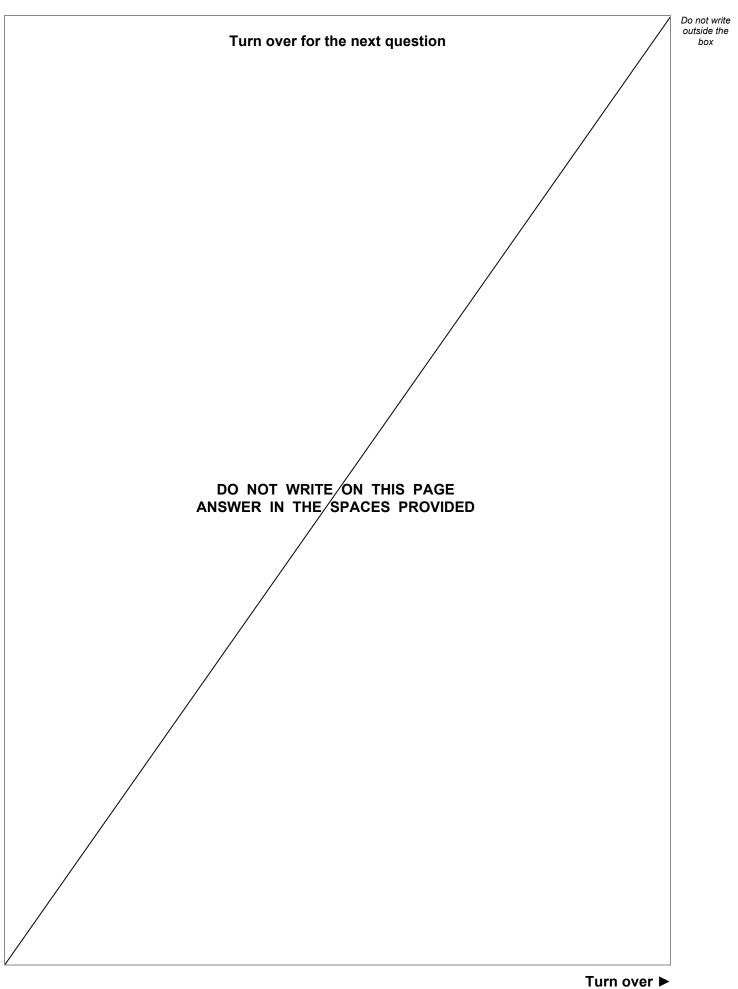
m = mass of the ion / kg v = speed of ion / m s⁻¹

Calculate the time, in s, for the ⁵³Cr⁺ ion to travel down the flight tube to reach the detector.

The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

[5 marks]

Do not write outside the


box

Time

s

15

0 3	This question is about Period 3 elements.				
	Figure 2 shows the second ionisation energies of some elements in Period 3.				
	Figure 2				
		2400 2200 *			
		2000			
	Second ionisation energy / kJ mol ^{_1}	1800			
		1600			
		1400 Mg Al Si P S			
0 3.1	Draw a cross (x) on	Figure 2 to show the second ionisation energy of silicon. [1 mark]			
0 3.2	Identify the element ionisation energy.	in Period 3, from sodium to argon, that has the highest second			
		ncluding state symbols, to show the process that occurs when the energy of this element is measured.			
	If you were unable t	to identify the element you may use the symbol Q in your equation. [2 marks]			
	Element				
	Equation				
0 3.3	Explain why the ato	mic radius decreases across Period 3, from sodium to chlorine. [2 marks]			

① 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark] Turn over for the next question 7
0 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark]
0 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark]
0 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark]
0 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark]
0 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark]
0 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark]
0 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark]
0 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark]
0 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark]
0 3.5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction. [1 mark]
0 3 . 5 Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction.
0 3 . 4 Identify the element in Period 3, from sodium to chlorine, that has the highest electronegativity. // [1 mark] [1 mark] [1 mark]

		Do not write outside the
0 4	Propanoic acid (C ₂ H ₅ COOH) is a weak acid.	box
	The acid dissociation constant (K_a) for propanoic acid is 1.35 × 10 ⁻⁵ mol dm ⁻³ at 25 °C	
0 4 . 1	State the meaning of the term weak acid.	
	[1 mark]	
0 4 . 2	Give an expression for the acid dissociation constant for propanoic acid. [1 mark]	
	Ka	
04.3	A student dilutes 25.0 cm^3 of 0.500 mol dm^{-3} propanoic acid by adding water until the total volume is 100.0 cm^3	
	Calculate the pH of this diluted solution of propanoic acid.	
	Give your answer to 2 decimal places.	
	[4 marks]	
	рН	

04.4

A buffer solution with a pH of 4.50 is made by dissolving x g of sodium propanoate (C_2H_5COONa) in a solution of propanoic acid. The final volume of buffer solution is 500 cm³ and the final concentration of the propanoic acid is 0.250 mol dm⁻³

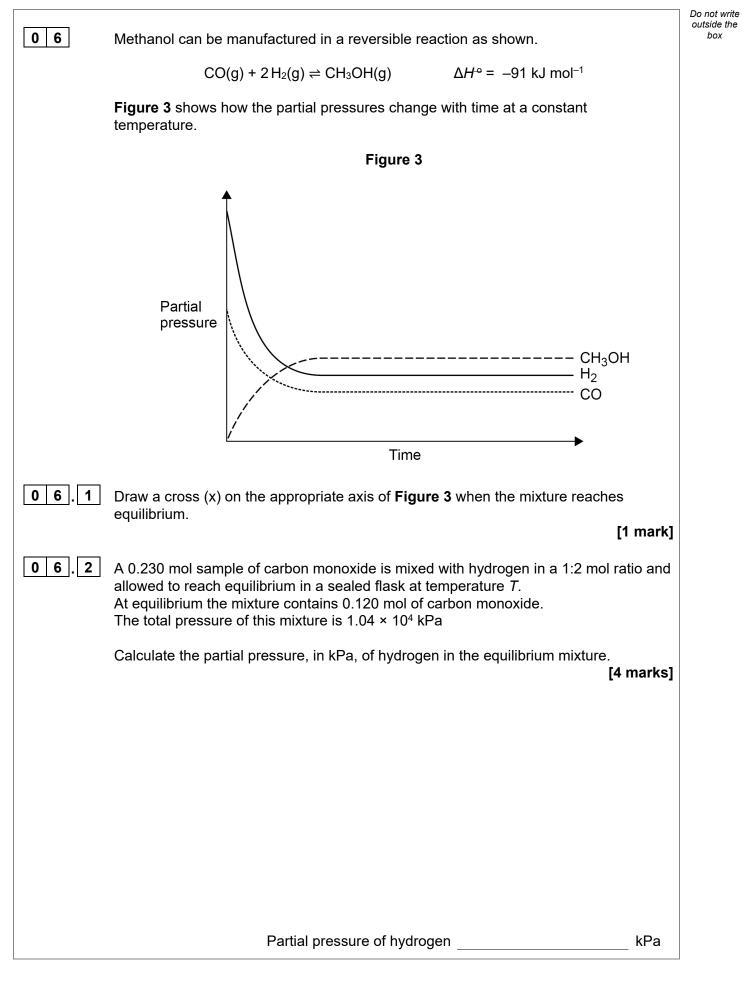
Calculate x in g For propanoic acid, $K_a = 1.35 \times 10^{-5}$ mol dm⁻³

[6 marks]

Do not write outside the

box

g

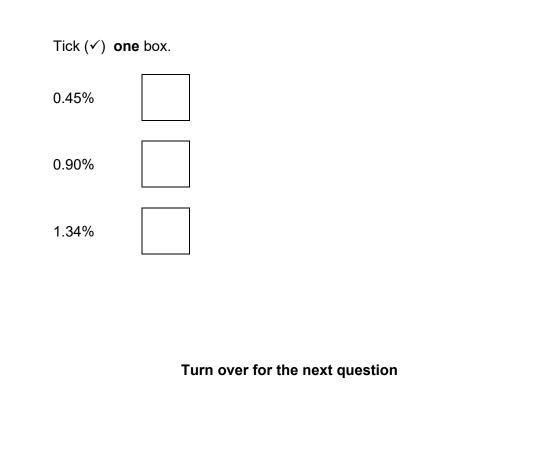


0 5	Some reactions of the $[Al(H_2O)_6]^{3+}(aq)$ ion are shown.	Do not outsid bo
	Colourless solution containing complex ion A $Na_{4}EDTA(aq) \qquad [Al(H_{2}O)_{6}]^{3+}(aq) \qquad Na_{2}CO_{3}(aq) \qquad \textbf{B}(s) \\ White \\ precipitate \\ NaOH(aq) \qquad \qquad$	
0 5.1	Give the formula of the white precipitate B .	
	State one other observation when Na ₂ CO ₃ (aq) is added to a solution containing $[Al(H_2O)_6]^{3+}(aq)$ ions.	
	Give an equation for this reaction. [3 marks]	
	Formula of B	_
	Observation	_
	Equation	
		-
0 5.2	Give the formula of the complex ion C .	
	State one condition needed for the formation of C from $[Al(H_2O)_6]^{3+}(aq)$ and NaOH(aq).	
	Give an equation for this reaction. [3 marks]	
	Formula of C	_
	Condition	_
	Equation	
	Equation	
	Equation	

0 5.3	Deduce the formula of the complex ion A . [1 mark]	Do not write outside the box
05.4	Explain, with the use of an equation, why a solution containing [Al(H ₂ O) ₆] ³⁺ has a pH <7 [3 marks] Equation	
	Explanation	
		10
	Turn over for the next question	
	Turn over ►	

06.3	Give an expression for the equilibrium constant (K_p) for this reaction.	Do not write outside the box
	State the units. [2 marks]	
	Kp	
	Units	
06.4	Some more carbon monoxide is added to the mixture in Question 06.2 . The new mixture is allowed to reach equilibrium at temperature <i>T</i> .	
	State the effect, if any, on the partial pressure of methanol and on the value of K_p [2 marks]	
	Effect on partial pressure of methanol	
	Effect on value of K _p	
06.5	State the effect, if any, of the addition of a catalyst on the value of K_p for this equilibrium.	
	Explain your answer. [2 marks]	
	Effect on value of K _p	
	Explanation	
		11
	Turn over for the next question	

0 7	The melting point of XeF $_4$ is higher than the melting point of PF $_3$	
	Explain why the melting points of these two compounds are different.	
	In your answer you should give the shape of each molecule, explain why e molecule has that shape and how the shape influences the forces that affe melting point.	each ect the
		[6 marks]



08	A student does an experiment to determine the percentage by mass of sodium chlorate(I), NaClO, in a sample of bleach solution.	Do not v outside box
	Method:	
	 Dilute a 10.0 cm³ sample of bleach solution to 100 cm³ with distilled water. Transfer 25.0 cm³ of the diluted bleach solution to a conical flask and acidify using sulfuric acid. 	
	 Add excess potassium iodide to the conical flask to form a brown solution containing l₂(aq). 	
	 Add 0.100 mol dm⁻³ sodium thiosulfate solution (Na₂S₂O₃) to the conical flask from a burette until the brown solution containing l₂(aq) becomes a colourless solution containing l⁻(aq). 	
	The student uses 33.50 cm ³ of sodium thiosulfate solution.	
	The density of the original bleach solution is 1.20 g cm $^{-3}$	
	The equations for the reactions in this experiment are	
	$ClO^{\scriptscriptstyle-}(aq) + 2H^{\scriptscriptstyle+}(aq) + 2I^{\scriptscriptstyle-}(aq) \to Cl^{\scriptscriptstyle-}(aq) + H_2O(I) + I_2(aq)$	
	$2 S_2 O_3^{2-}(aq) + I_2(aq) \rightarrow 2 I^-(aq) + S_4 O_6^{2-}(aq)$	
08.1	Use all the information given to calculate the percentage by mass of NaClO in the original bleach solution.	
	Give your answer to 3 significant figures. [7 marks]	
	Percentage by mass	

0 8. **2** The total uncertainty from two readings and an end point error in using a burette is ± 0.15 cm³

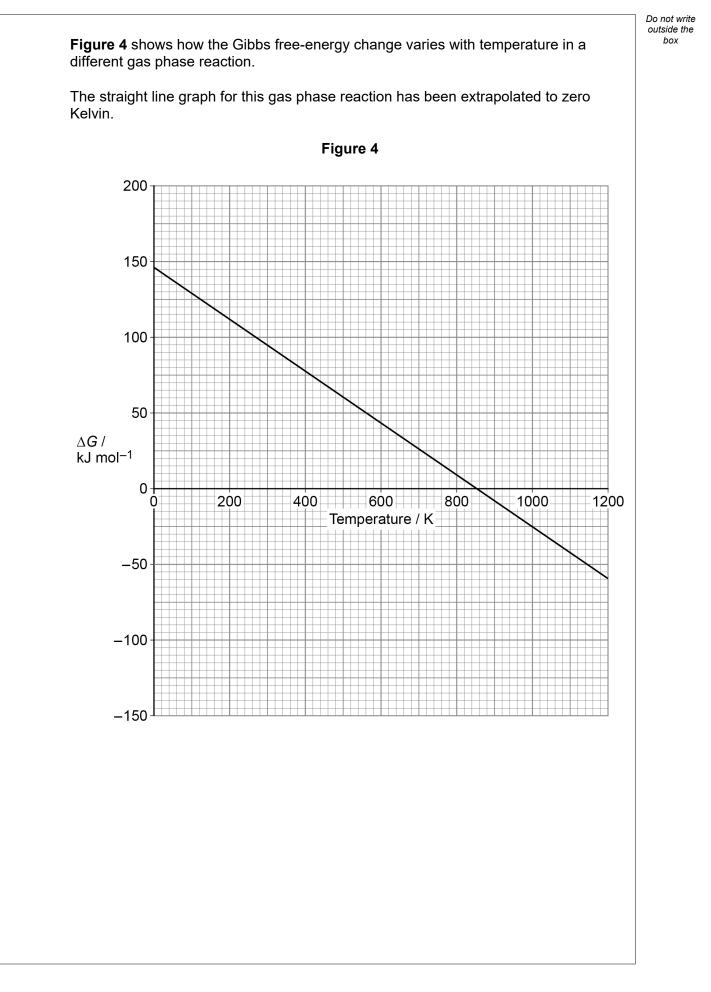
What is the total percentage uncertainty in using the burette in this experiment?

Turn over ►

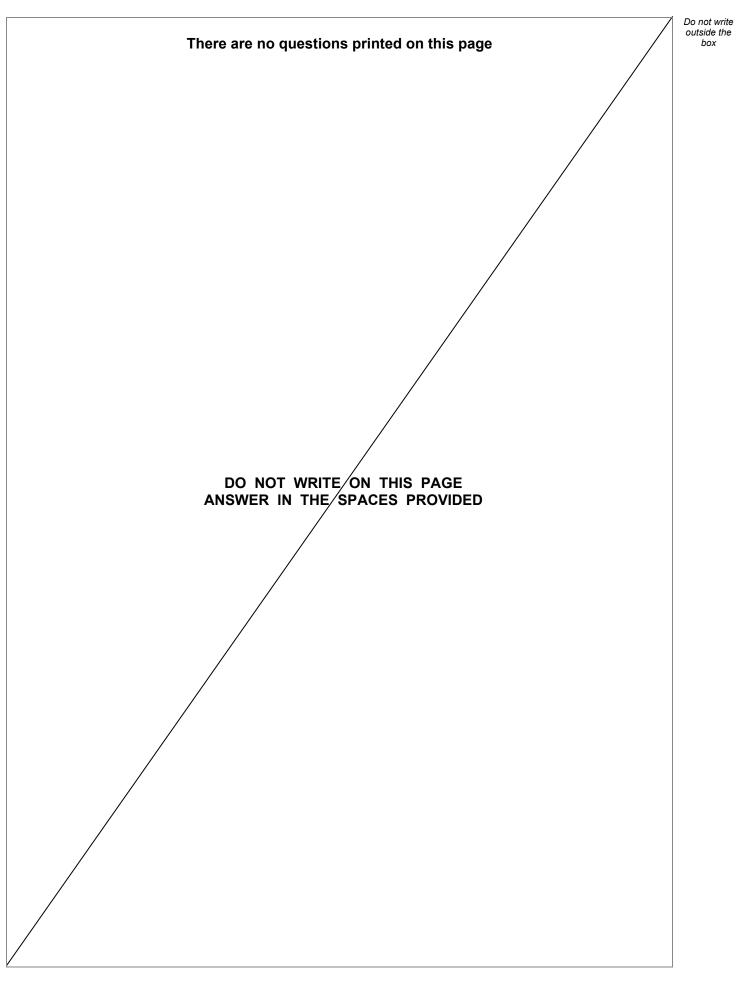
Do not write outside the box

8

[1 mark]


		Do not write
09	This question is about sodium halides.	outside the box
09.1	State what is observed when silver nitrate solution is added to sodium fluoride solution.	
	[1 mai	r k]
		—
09.2	State one observation when solid sodium chloride reacts with concentrated sulfuric acid.	
	Give an equation for the reaction.	
	State the role of the chloride ions in the reaction.	
	[3 mark	(s]
	Observation	
	Equation	
	Dela	—
	Role	
09.3	Give an equation for the redox reaction between solid sodium bromide and concentrated sulfuric acid.	
	Explain, using oxidation states, why this is a redox reaction.	
	[3 mark	(s]
	Equation	
	Explanation	
		_
		—
09.4	State what is observed when aqueous chlorine is added to sodium bromide solution.	
	Give an ionic equation for the reaction.	
	[2 mark	(s]
	Observation	
	Ionic equation	
		9

kJ mol-1



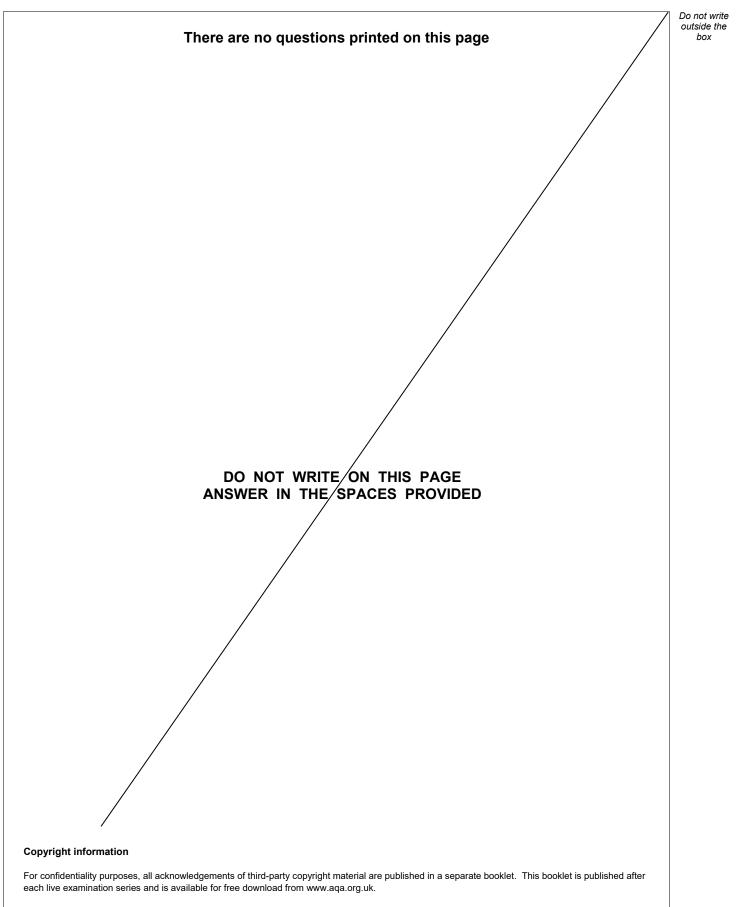
this reaction. [4 marks]	DX
Δ <i>H</i> kJ mol ⁻¹	
ΔS J K ⁻¹ mol ⁻¹	
1 0 . 3 State what Figure 4 shows about the feasibility of the reaction. [1 mark] [1 mark]	
	_

1 1	This question is shout a glusses, exugen fuel cell	Do not wi outside t box
	This question is about a glucose–oxygen fuel cell.	
	When the cell operates, the glucose ($C_6H_{12}O_6$) molecules react with water at the negative electrode to form carbon dioxide and hydrogen ions.	
	Oxygen gas reacts with hydrogen ions to form water at the positive electrode.	
11.1	Deduce the half-equation for the reaction at the negative electrode. [1 r	nark]
11.2	Deduce the half-equation for the reaction at the positive electrode. [1 r	nark]
11.3	Give the equation for the overall reaction that occurs in the Glucose–oxygen fuel cell. [1 r	nark]
11.4	The negative electrode is made of carbon and the positive electrode is made of platinum. Give the conventional representation for the glucose–oxygen fuel cell. [2 m	arks]
1 1.5	State what must be done to maintain the EMF of this fuel cell when in use. [1 r	nark]6
	END OF QUESTIONS	

IB/M/Jun20/7405/1

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.



Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/Jun20/7405/1