$A Q A D$

Please write clearly in block capitals.
Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

Name \qquad

| $\mathbf{0}$ | $\mathbf{1}$ | .2 |
| :--- | :--- | :--- | The rate equation for the reaction is

$$
\text { rate }=k\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]
$$

Table 1 shows the initial concentrations used in an experiment.

Table 1

	$\mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{C O C H}_{\mathbf{3}}$	$\mathbf{I}_{\mathbf{2}}$	\mathbf{H}^{+}
Initial concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$	4.35	0.00500	0.825

The initial rate of reaction in this experiment is $1.45 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
Calculate the value of the rate constant, k, for the reaction and give its units.
k \qquad
Units \qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	Calculate the initial rate of reaction when all of the initial concentrations are halved.

\qquad $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$

Question 1 continues on the next page

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{4}$ | An experiment was done to measure the time, t, taken for a solution of iodine to react |
| :--- | :--- | :--- | :--- | completely when added to an excess of an acidified solution of butanone.

Suggest an observation used to judge when all the iodine had reacted.
\qquad
\qquad

The experiment was repeated at different temperatures.
Figure 1 shows how $\frac{1}{t}$ varied with temperature for these experiments.
Figure 1

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ Describe and explain the shape of the graph in Figure 1. |
| :--- | :--- | :--- | :--- |

Do not write
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$.6

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{7}$ | For a different reaction, Table $\mathbf{2}$ shows the value of the rate constant at different |
| :--- | :--- | :--- | :--- | temperatures.

Table 2

Experiment	Temperature $/ \mathbf{K}$	Rate constant $/ \mathbf{s}^{\mathbf{- 1}}$
1	$T_{1}=303$	$k_{1}=1.55 \times 10^{-5}$
2	$T_{2}=333$	$k_{2}=1.70 \times 10^{-4}$

This equation can be used to calculate the activation energy, E_{a}

$$
\ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

Calculate the value, in $\mathrm{kJ} \mathrm{mol}^{-1}$, of the activation energy, E_{a} The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
\qquad
 dilute acid.

Name of mechanism

Outline of mechanism

| $\mathbf{0}$ | 2 |
| :--- | :--- | Tetrafluoroethene is made from chlorodifluoromethane in this reversible reaction.

$$
2 \mathrm{CHClF}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{~F}_{4}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g}) \quad \Delta H=+128 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

A 2.00 mol sample of CHCLF_{2} is placed in a container of volume $23.2 \mathrm{dm}^{3}$ and heated. When equilibrium is reached, the mixture contains 0.270 mol of CHClF_{2}

0	2	1

[2 marks]

Amount of $\mathrm{C}_{2} \mathrm{~F}_{4}$ \qquad mol

Amount of HCl \qquad mol

0	2	2	Give an expression for K_{c} for this equilibrium.

K_{c}

\section*{| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Calculate a value for K_{c} |
| :--- | :--- | :--- | :--- |}

Give its units.
K_{c} \qquad Units

| 0 | $\mathbf{2}$. | $\mathbf{4}$ State and explain the effect of using a higher temperature on the equilibrium yield of |
| :--- | :--- | :--- | :--- | tetrafluoroethene.

Effect on yield \qquad
Explanation
\qquad
\qquad
\qquad
\qquad

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{5}$ Chemists provided evidence that was used to support a ban on the use of |
| :--- | :--- | :--- | :--- | chlorodifluoromethane as a refrigerant.

Many refrigerators now use pentane as a refrigerant.
State the environmental problem that chlorodifluoromethane can cause.
Give one reason why pentane does not cause this problem.

Environmental problem \qquad
Environment problem

Reason why pentane does not cause this problem \qquad
\qquad
\qquad

0	3	This question is about 2-methylbut-1-ene.

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{1}$ | Name the mechanism for the reaction of 2-methylbut-1-ene with |
| :--- | :--- | :--- | :--- | concentrated sulfuric acid.

Outline the mechanism for this reaction to form the major product.

Name of mechanism
Outline of mechanism to form major product

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ Draw the structure of the minor product formed in the reaction in Question 03.1

Explain why this is the minor product.

Structure of minor product

Explanation

\qquad
\qquad
\qquad
\qquad

epeating unit

Proteins are polymers made from amino acids.
Part of the structure of a protein is shown.
-Cys-Ser-Asp-Phe-
Each amino acid in the protein is shown using the first three letters of its name.

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$	Identify the type of protein structure shown.

Tick (\checkmark) one box.

Primary

Secondary

Tertiary

| 0 | 4 |
| :--- | :--- | .2 Draw a structure for the-Cys-Ser- section of the protein.

Use the Data Booklet to help you answer this question.

| 0 | $\mathbf{4}$ | $\mathbf{3}$ Name the other substance formed when two amino acids react together to form part |
| :--- | :--- | :--- | :--- | of a protein chain.

The general structure of an amino acid is shown.

R represents a group that varies between different amino acids. R groups can interact and contribute to protein structure.

0	4	4
4	Explain why the strength of the interaction between two cysteine R groups differs from	

\qquad

| 0 | $\mathbf{4}$ | $\mathbf{5}$ Deduce the type of interaction that occurs between a lysine R group and an |
| :--- | :--- | :--- | :--- | aspartic acid R group.

| 0 | 5 |
| :--- | :--- | This question is about the preparation of hexan-2-ol.

Hexan-2-ol does not mix with water and has a boiling point of $140^{\circ} \mathrm{C}$
Hexan-2-ol can be prepared from hex-1-ene using this method.
a Measure out $11.0 \mathrm{~cm}^{3}$ of hex-1-ene into a boiling tube in an ice bath.
b Carefully add $5 \mathrm{~cm}^{3}$ of concentrated phosphoric acid to the hex-1-ene.
c After 5 minutes add $10 \mathrm{~cm}^{3}$ of distilled water to the mixture and transfer the boiling tube contents to a separating funnel.
d Shake the mixture and allow it to settle.
e Discard the lower (aqueous) layer.
f Add a fresh $10 \mathrm{~cm}^{3}$ sample of distilled water and repeat steps \mathbf{d} and \mathbf{e}.
g Transfer the remaining liquid to a beaker.
h Add 2 g of anhydrous magnesium sulfate and allow to stand for 5 minutes.
i Filter the mixture under reduced pressure.
j Distil the filtrate and collect the distillate that boils in the range $130-160^{\circ} \mathrm{C}$

| $\mathbf{0}$ | $\mathbf{5} .1$ | $\mathbf{1}$ | It is important to wear eye protection and a lab coat when completing this experiment. |
| :--- | :--- | :--- | :--- | Suggest, with a reason, one other appropriate safety precaution for this experiment. [2 marks]

Precaution \qquad
Reason \qquad
\qquad

\qquad
\qquad

\qquad
\qquad

Question 5 continues on the next page

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{4}$ Complete and label the diagram of the apparatus used to filter the mixture under |
| :--- | :--- | :--- | :--- | reduced pressure in step \mathbf{i}.

| 0 | 5 | 5 |
| :--- | :--- | :--- | in step \mathbf{j}.

Suggest one reason why it could be difficult to remove this impurity.

Impurity \qquad
Reason
\qquad

| $\mathbf{0}$ | $\mathbf{5} .6$ Calculate the mass, in g , of hexan-2-ol formed from $11.0 \mathrm{~cm}^{3}$ of hex-1-ene if the |
| :--- | :--- | :--- | yield is 31.0%

Give your answer to 1 decimal place.
Density of hex-1-ene $=0.678 \mathrm{~g} \mathrm{~cm}^{-3}$

Do not write outside the box

$\mathbf{0}$	6	This question is about compound \mathbf{X} with the empirical formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

Figure $\mathbf{2}$ shows the infrared spectrum of \mathbf{X}.
Figure 3 shows the ${ }^{13} \mathrm{C}$ NMR spectrum of \mathbf{X}.
The ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{X} shows four peaks with different chemical shift values.
Table 3 gives data for these peaks.
Figure 2

Figure 3

Table 3

Chemical shift $\delta /$ ppm	3.9	3.7	2.1	1.2
Splitting pattern	quartet	singlet	singlet	doublet
Integration value	1	1	3	3

Show how information from Figure 2, Figure 3 and Table 3 can be used to deduce the structure of compound \mathbf{X}.
\qquad
The answer space for this question continues on the next page

$\mathbf{0}$	$\mathbf{7}$	This question is about esters.

Figure 4 shows an incomplete mechanism for the reaction of an ester with aqueous sodium hydroxide.

Figure 4

step 2
\longrightarrow

step 3
$\mathrm{CH}_{3} \mathrm{OH}$

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$	Add three curly arrows to complete the mechanism in Figure 4.

| 0 | $\mathbf{7}$ | 2 |
| :--- | :--- | :--- | Name the type of reaction shown in Figure 4.

\qquad

0	7	3	Deduce the role of the $\mathrm{CH}_{3} \mathrm{O}^{-}$ion in step 3 shown in Figure 4.

\qquad

0	$\mathbf{7} .4$	A triester in vegetable oil reacts with sodium hydroxide in a similar way.

Give a use for a product of this reaction.
[1 mark]
\qquad

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ Give an equation for the overall reaction when benzene reacts with |
| :--- | :--- | :--- | methanoyl chloride.

Name the organic product.

Equation
Name \qquad

0	$\mathbf{8}$.	$\mathbf{2}$ Identify the catalyst needed in this reaction.

Give an equation to show how the catalyst is used to form the electrophile, $[\mathrm{HCO}]^{+}$
[2 marks]
Catalyst \qquad

Equation \qquad

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{3}$ Outline the mechanism for the reaction of benzene with the electrophile, [HCO] ${ }^{+}+{ }^{+}$. |
| :--- | :--- | :--- | :--- |

Turn over for the next question

$\mathbf{0}$	$\mathbf{9} \quad$ This question is about olive oil.

A sample of olive oil is mainly the unsaturated fat \mathbf{Y} mixed with a small amount of inert impurity.

The structure of \mathbf{Y} in the olive oil is shown.
Y has the molecular formula $\mathrm{C}_{57} \mathrm{H}_{100} \mathrm{O}_{6}\left(M_{\mathrm{r}}=880\right)$.

The amount of \mathbf{Y} is found by measuring how much bromine water is decolourised by a sample of oil, using this method.

- Transfer a weighed sample of oil to a $250 \mathrm{~cm}^{3}$ volumetric flask and make up to the mark with an inert organic solvent.
- Titrate $25.0 \mathrm{~cm}^{3}$ samples of the olive oil solution with $0.025 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Br}_{2}(\mathrm{aq})$.

| $\mathbf{0}$ | $\mathbf{9} .1$ | A suitable target titre for the titration is $30.0 \mathrm{~cm}^{3}$ of $0.025 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Br}_{2}(\mathrm{aq})$. |
| :--- | :--- | :--- | Justify why a much smaller target titre would not be appropriate.

Calculate the amount, in moles, of bromine in the target titre.

Justification \qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{2}$ Calculate a suitable mass of olive oil to transfer to the volumetric flask using your |
| :--- | :--- | :--- | :--- | answer to Question 09.1 and the structure of \mathbf{Y}.

Assume that the olive oil contains 85% of \mathbf{Y} by mass.
(If you were unable to calculate the amount of bromine in the target titre, you should assume it is $6.25 \times 10^{-4} \mathrm{~mol}$. This is not the correct amount.)

	The olive oil solution can be prepared using this method. - Place a weighing bottle on a balance and record the mass, in g, to 2 decimal places. - Add olive oil to the weighing bottle until a suitable mass has been added. - Record the mass of the weighing bottle and olive oil. - Pour the olive oil into a $250 \mathrm{~cm}^{3}$ volumetric flask. - Add organic solvent to the volumetric flask until it is made up to the mark. - Place a stopper in the flask and invert the flask several times.
0 9	Suggest an extra step to ensure that the mass of olive oil in the solution is recorded accurately.
	Justify your suggestion. [2 marks]
	Extra step
	Justification

| $\mathbf{0}$ | $\mathbf{9} .4$ State the reason for inverting the flask several times. |
| :--- | :--- | :--- |

\qquad
\qquad
\qquad

| 0 | $\mathbf{9}$ | $\mathbf{5}$ A sample of the olive oil was dissolved in methanol and placed in a |
| :--- | :--- | :--- | :--- | mass spectrometer. The sample was ionised using electrospray ionisation.

Each molecule gained a hydrogen ion $\left(\mathrm{H}^{+}\right)$during ionisation.
The spectrum showed a peak for an ion with $\frac{m}{z}=345$ formed from an impurity in the olive oil.
The ion with $\frac{m}{z}=345$ was formed from a compound with the empirical formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$

Deduce the molecular formula of this compound.
Show your working.

Molecular formula

1	$\mathbf{0}$	This question is about the reaction scheme shown.

1	$\mathbf{0}$.	$\mathbf{1}$ State the reagents needed for step 1 and the reagents needed for step 2.

step 1 \qquad
\qquad
step 2 \qquad
\qquad
$1 \mathbf{0} .2$ Give the name of the mechanism for the reaction in step 3.

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{3}$	Name the reagent for step $\mathbf{4}$.

State a necessary condition for step 4.

Reagent \qquad
Condition \qquad

| $\mathbf{1}$ | $\mathbf{0} .4$ | $\mathbf{4}$ Amine \mathbf{A} is formed in step $\mathbf{2}$ and amine \mathbf{B} is formed in step $\mathbf{5}$. |
| :--- | :--- | :--- | :--- |

Explain why the yield of \mathbf{B} in step $\mathbf{5}$ is less than the yield of \mathbf{A} in step $\mathbf{2}$.
\qquad
\qquad
\qquad
\qquad

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{5}$ Explain why amine \mathbf{B} is a stronger base than amine \mathbf{A}.

\qquad
\qquad
\qquad

END OF QUESTIONS

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the

Copyright © 2022 AQA and its licensors. All rights reserved.

