

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	L declare this is my own work

A-level CHEMISTRY

Paper 3

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

Advice

• You are advised to spend 70 minutes on **Section A** and 50 minutes on **Section B**.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
Section B	
TOTAL	

	Section A			
	Answer all questions in this sec	tion.		
0 1	A value for enthalpy of solution can be determined	l in two ways:		
	from a cycle, using lattice enthalpy and enthalpifrom the results of a calorimetry experiment.	es of hydration	1	
0 1.1	Define the term enthalpy of lattice dissociation.		[2 ו	narks]
0 1.2	The enthalpy of solution for ammonium nitrate is t shown.	he enthalpy ch	ange for the rea	action
	$NH_4NO_3(s)$ + aq $\rightarrow NH_4^+(aq)$ + $NO_3^-(aq)$	aq) <i>∆H</i> = +2	6 kJ mol ⁻¹	
	Table 1			
		NH4+(g)	NO₃⁻(g)]
	Enthalpy of hydration $\Delta_{hyd}H/kJ \text{ mol}^{-1}$	-307	-314]
	Draw a suitably labelled cycle and use it, with data enthalpy of lattice dissociation for ammonium nitra	a from Table 1 , ate.	, to calculate th	e
			[3 ı	narks]
	Enthalpy of lattice dissociation		kJ m	ol ⁻¹

Do not write outside the box **01. 3** A student does an experiment to determine a value for the enthalpy of solution for ammonium nitrate.

The student uses this method.

- Measure 25.0 cm³ of distilled water in a measuring cylinder.
- Pour the water into a beaker.
- Record the temperature of the water in the beaker.
- Add 4.00 g of solid NH₄NO₃ to the water in the beaker.
- Stir the solution and record the lowest temperature reached.

 Table 2 shows the student's results.

Table	2 (
-------	------------

Initial temperature / °C	20.2
Lowest temperature / °C	12.2

Calculate the enthalpy of solution, in kJ mol⁻¹, for ammonium nitrate in this experiment.

Assume that the specific heat capacity of the solution, $c = 4.18 \text{ J} \text{ K}^{-1} \text{ g}^{-1}$

Assume that the density of the solution = 1.00 g cm^{-3}

[3 marks]

Enthalpy of solution

kJ mol⁻¹

	The uncertainty in each of the tensor meture we diverse from the thermosphere sector in	Do not write outside the
	this experiment is ±0.1°C	
	Calculate the percentage uncertainty in the temperature change in this experiment. [1 mark]	
	Percentage uncertainty	
0 1.5	Suggest a change to the student's method, using the same apparatus, that would reduce the percentage uncertainty in the temperature change.	
	Give a reason for your answer. [2 marks]	
	Change	
	Reason	
0 1.6	Another student obtained a value of $+15 \text{ kJ mol}^{-1}$ using the same method. Suggest the main reason for the difference between this experimental value for the enthalpy of solution and the correct value of $+26 \text{ kJ mol}^{-1}$	
	[1 mark]	
	Question 1 continues on the next page	

0 1. **7 Table 3** shows some entropy data at 298 K

	lable 3
	Entropy S/JK ⁻¹ mol ⁻¹
NH ₄ NO ₃ (s)	151
NH4 ⁺ (aq)	113
NO₃⁻(aq)	146

Calculate a value for the Gibbs free-energy change (ΔG), at 298 K, for the reaction when ammonium nitrate dissolves in water.

 $NH_4NO_3(s) + aq \rightarrow NH_4^+(aq) + NO_3^-(aq)$ $\Delta H = +26 \text{ kJ mol}^{-1}$

Use data from **Table 3** and the value of ΔH from the equation. Assume for the solvent, water, that the entropy change, $\Delta S = 0$

Explain what the calculated value of ΔG indicates about the feasibility of this reaction at 298 K

[4 marks]

Explanation

ΔG _____ kJ mol⁻¹

0 1 . 8

Turn over ►

0 2 Tschermigite is a hydrated, water-soluble mineral, with relative formula mass of 453.2

The formula of tschermigite can be represented as $M.xH_2O$, where M represents all the ions present.

Table 4 shows its composition by mass.

Element	% by mass
Ν	3.09
Н	6.18
Al	5.96
S	14.16
0	70.61

Table 4

In an analysis, it is found that the mineral contains the ions $NH_4{}^{\scriptscriptstyle +},\,Al^{3+}$ and $SO_4{}^{2-}$

Calculate the empirical formula of tschermigite and the value of x in M.xH₂O

Describe the tests, with their results, including ionic equations, that would confirm the identities of the ions present.

[6 marks]

0 8

	∃ Do not w
Under suitable conditions, 2-bromobutane reacts with sodium hydroxide to produce a mixture of five products, A , B , C , D and E .	outside box
Products A , B and C are alkenes.	
A is a structural isomer of B and C .	
A does not exhibit stereoisomerism.	
B and C are a pair of stereoisomers.	
Products D and E are alcohols.	
D and E are a pair of enantiomers.	
Give the names of the two concurrent mechanisms responsible for the formation of the alcohols.	
[2 marks]	
Mechanism to form alkenes	
Mechanism to form alcohols	
Define the term stereoisomers.	
[2 marks]	
Deduce the name of isomer A .	
Explain why A does not exhibit stereoisomerism. [2 marks]	
Name	
Explanation	
۱	
	Under suitable conditions, 2-bromobutane reacts with sodium hydroxide to produce a mixture of five products, A , B , C , D and E . Products A , B and C are alkenes. A is a structural isomer of B and C . A does not exhibit stereoisomerism. B and C are a pair of stereoisomers. Products D and E are alcohols. D and E are a pair of enantiomers. Give the names of the two concurrent mechanisms responsible for the formation of the alkenes and the alcohols. D and E are alcohols. D and E are a pair of enantiomers. Give the names of the two concurrent mechanisms responsible for the formation of the alkenes and the alcohols. D and E are alcohols. Define the term stereoisomers. [2 marks] Define the term stereoisomers. [2 marks] Deduce the name of isomer A . Explain why A does not exhibit stereoisomerism. [2 marks] Name Explanation

0 3.4	Outline the mechanism for the reaction of 2-bromobutane with sodium hydroxide to	Do not write outside the box
	form alkene A. [3 marks]	
0 3 . 5	Deduce the name of isomer B and the name of isomer C .	
	Explain the origin of the stereoisomerism in B and C . [2 marks]	
	Names	
	Explanation	
0 3 6	Draw 3D representations of enantiomers D and E to show how their structures are related.	
	[2 marks]	
	Question 3 continues on the next page	

Turn over ►

		Do not write
0 3.7	A student compares the rates of hydrolysis of 1-chlorobutane, 1-bromobutane and 1-iodobutane.	outside the box
	The suggested method is:	
	 add equal volumes of the three halogenoalkanes to separate test tubes add equal volumes of aqueous silver nitrate to each test tube record the time taken for a precipitate to appear in each test tube. 	
	State and explain the order in which precipitates appear. [2 marks]	I
	Order in which precipitates appear	-
		-
	Explanation	-
		-
		15

4	Hydrogen peroxide solution decomposes to form water and oxygen.
	$2 \operatorname{H}_2\operatorname{O}_2(\operatorname{aq}) \to 2 \operatorname{H}_2\operatorname{O}(\operatorname{I}) + \operatorname{O}_2(\operatorname{g})$
	The reaction is catalysed by manganese(IV) oxide.
	A student determines the order of this reaction with respect to hydrogen peroxide. The student uses a continuous monitoring method in the experiment.
	The student places hydrogen peroxide solution in a conical flask with the catalyst and uses a gas syringe to collect the oxygen formed. The student records the volume of oxygen every 10 seconds for 100 seconds.
4.1	Explain why the reaction is fastest at the start. [2 marks]

Gradient	mol dm⁻³	s −1
	-	

Question 4 continues on the next page

Turn over ►

0 4. **3** The concentration of hydrogen peroxide solution at time *t* during the experiment can be calculated using this expression.

$$\left[\mathsf{H}_{2}\mathsf{O}_{2}\right]_{t} = \left[\mathsf{H}_{2}\mathsf{O}_{2}\right]_{\text{initial}} \left(\frac{V_{\max} - V_{t}}{V_{\max}}\right)$$

 $[H_2O_2]_t$ = concentration of hydrogen peroxide solution at time *t* / mol dm⁻³

 $[H_2O_2]_{initial}$ = concentration of hydrogen peroxide solution at the start / mol dm⁻³

 $V_{\rm max}$ = total volume of oxygen gas collected during the whole experiment / cm³

 V_t = volume of oxygen gas collected at time t / cm^3

In this experiment, V_{max} = 100 cm³

Use **Figure 1** and the expression to calculate $[H_2O_2]_t$ when 20 cm³ of oxygen has been collected.

[2 marks]

Do not write outside the

box

$\left[H_2O_2\right]$	t mol dm ⁻³

0 5	This question is about catalysis	Do not write outside the box
	This question is about catalysis.	
0 5 . 1	Zeolites are used as heterogeneous catalysts in the catalytic cracking of alkanes.	
	Letradecane ($C_{14}H_{30}$) can be cracked to form octane and a cycloalkane.	
	Give an equation for this reaction.	
	State the meaning of the term heterogeneous. [2 marks]	
	Equation	
	Heterogeneous	
0 5.2	A student determines the concentration of ethanedioate ions in an acidified solution by titration with potassium manganate(VII) solution.	
	$2MnO_4^- + 5C_2O_4{}^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$	
	The mixture is warmed before the addition of potassium manganate(VII) solution because the reaction is slow at first. When more potassium manganate(VII) solution is added, the mixture goes colourless quickly due to the presence of an autocatalyst.	
	Explain the meaning of the term autocatalyst.	
	Explain, using equations where appropriate, why the reaction is slow at first and then	
	goes quickly. [6 marks]	

Do not write outside the box

٦

0 5.3	The reaction be catalysed by Co	etween peroxodisulfate ions and iodide i o ²⁺ ions.	ions in aqueous s	solution can be
	у у <u>-</u>	$S_2O_8^{2-}$ + 2 I ⁻ \rightarrow 2 SO ₄ ²⁻ \rightarrow	+ ₂	
	Table 6 gives r	elevant standard electrode potentials.		
		Table 6		
		Electrode half-equation	E ° / V	
		$S_2O_8^{2-}(aq) + 2e^- \rightarrow 2SO_4^{2-}(aq)$	+2.01	
		$\text{Co}^{3+}(\text{aq}) + e^- \rightarrow \text{Co}^{2+}(\text{aq})$	+1.82	
		l₂(aq) + 2 e⁻ → 2 l⁻(aq)	+0.54	
	Use the electro	de potential data to suggest how Co ²⁺ o	atalyses the read	ction. [3 marks]
				[0]

Г

11

	Section B	D ہ
	Answer all questions in this section.	
Only one For each	answer per question is allowed. answer completely fill in the circle alongside the appropriate answer.	
CORRECT ME	THOD WRONG METHODS 🐼 💿 📾 🗹	
If you war	nt to change your answer you must cross out your original answer as	shown.
lf you wisl as shown	h to return to an answer previously crossed out, ring the answer you · 😥	now wish to select
You may Do not us	do your working in the blank space around each question but this will a additional sheets for this working.	I not be marked.
06	Which atom in the ground state contains at least one unpaired p e	electron? [1 mark]
	A Na	0
	B Ne	0
	C O	0
	D Sc	0
0 7	Complete combustion of 0.0100 mol of an organic acid produced (carbon dioxide.	0.0200 mol of
	The same amount of the acid required 20 cm ³ of 1.00 mol dm ⁻³ Na neutralisation.	aOH (aq) for
	Which could be the formula of the acid?	F4
		[1 mark]
	A HCOOH	0
	B CH₃COOH	0
	С НООССООН	0
	D HOOCCH2COOH	0

L

1 4	A strong acid H ₂ X dissociates in aqueous solution.		Do not write outside the box
	$H_2X(aq) \rightarrow 2H^+(aq) + X^{2-}(aq)$		
	What is the pH of a 0.020 mol dm ^{-3} solution of this acid?		
		[1 mark]	
	A 1.00	0	
	B 1.40	0	
	C 1.70	0	
	D 2.00	0	
1 5	Equal volumes of two solutions, each with the same concentration, are n at 298 K	nixed together	
	Which two solutions, when mixed, form a solution with a pH $>7?$	[1 mark]	
	A HCOOH and HCOOK	0	
	B KOH and CH ₃ COOH	0	
	C NH ₃ and HCl	0	
	D NH₄Cl and KCl	0	
1 6	Which ionisation needs less energy than this process?		
	$Mg(g) \rightarrow Mg^{+}(g)$ + e ⁻	[1 mark]	
	A $Al(g) \rightarrow Al^+(g) + e^-$	0	
	B $Ar(g) \rightarrow Ar^+(g) + e^-$	0	
	C $Be(g) \rightarrow Be^+(g) + e^-$	0	
	D $Mg^+(g) \rightarrow Mg^{2+}(g) + e^-$	0	

23

1 7	Which statement is correct about the Group 1 elements?	[1 mark]	Do not write outside the box
	A The Cs⁺ ion has a more negative enthalpy of hydration than the Rb⁺ ion.	0	
	B The enthalpy of atomisation for potassium is greater than the enthalpy of atomisation for sodium.	0	
	C The melting point of potassium is higher than the melting point of sodium.	0	
	D The second ionisation energy of rubidium is lower than the second ionisation energy of lithium.	0	
1 8	A test for chloride ions in aqueous solution involves adding dilute nitrieby aqueous silver nitrate.	c acid followed	
	What is the reason for adding the nitric acid?	[1 mark]	
	A To convert AgNO ₃ into $[Ag(NO_3)_2]^-$	0	
	B To decrease the solubility of silver chloride	0	
	C To increase the pH of the solution	0	
	D To prevent the precipitation of other silver compounds	0	
19	Which pair of reagents reacts to form a tetrahedral complex?	[1 mark]	
	A CoCl ₂ (aq) and concentrated NH ₃ (aq)	0	
	B CuSO ₄ (aq) and concentrated $NH_3(aq)$	0	
	C CuSO ₄ (aq) and sodium ethanedioate(aq)	0	
	D $FeCl_3(aq)$ and concentrated $HCl(aq)$	0	

			Do not write
2 0	Cobalt(II) chloride solution changes colour when an excess of concer hydrochloric acid is added.	ntrated	outside the box
	What type of reaction takes place?		
		[1 mark]	
	A hydrolysis	0	
	B ligand substitution	0	
	C precipitation	0	
	D redox	0	
2 1	The reaction between vanadium(IV) ions and manganate(VII) ions in can be represented by the equation	acidic solution	
	$5 V^{4+} + MnO_4^- + 8 H^+ \rightarrow 5 V^{5+} + Mn^{2+} + 4 H_2O$		
	What volume, in dm ³ , of 0.020 mol dm ^{-3} KMnO ₄ is needed to oxidise 0.10 mol of vanadium(IV) ions completely?		
		[1 mark]	
	A 0.10	0	
	B 0.50	0	
	C 1.0	0	
	D 5.0	0	
22	2-Bromopropane reacts with bromine to form 2,2-dibromopropane.		
	What is the name of the mechanism of this reaction?	[1 mark]	
	A Electrophilic addition	0	
	B Elimination	0	
	C Free-radical substitution	0	
	D Nucleophilic substitution	0	

3 4	Which compound can be dehydrated to form an alkene?	[1 mark]	Do not write outside the box
	A CH₃CHO	0	
	B CH₃COOH	0	
	C CH ₃ CH ₂ OH	0	
		0	
3 5	Which compound is not a 2-aminocarboxylic acid?	[1 mark]	
	A CH ₃ CH(NH ₂)COOH	0	
	B CH ₃ CH(NH ₂)CH ₂ COOH	0	
	C CH ₃ CH ₂ CH(NH ₂)COOH	0	
	D (CH ₃) ₂ CHCH(NH ₂)COOH	0	30
	END OF QUESTIONS		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

