GCSE

MATHEMATICS

8300/1F

FoundationTier Paper 1 Non-Calculator
Mark scheme
J une 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.
\(\left.$$
\begin{array}{ll}\text { M } & \begin{array}{l}\text { Method marks are awarded for a correct method which could lead } \\
\text { to a correct answer. }\end{array} \\
\text { A } & \begin{array}{l}\text { Accuracy marks are awarded when following on from a correct } \\
\text { method. It is not necessary to always see the method. This can be } \\
\text { implied. }\end{array} \\
\text { B } & \begin{array}{l}\text { Marks awarded independent of method. }\end{array} \\
\text { ft } & \begin{array}{l}\text { Follow through marks. Marks awarded for correct working } \\
\text { following a mistake in an earlier step. }\end{array}
$$

Special case. Marks awarded for a common misinterpretation

which has some mathematical worth.\end{array}\right]\)| A method mark dependent on a previous method mark being |
| :--- |
| awarded. |

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

$\mathbf{1}$	reflex	B1	

2	$x=2$	B 1	

3	6	B 1	
$\mathbf{4}$	$12 \times \frac{1}{2}$	B 1	

5(a)	382.4 or 362.42 or 15.82	B1	implied by correct an 384.48 or 344.52 imp (both additions or both
	380.32	B1ft	ft correct evaluation their 382.4-2.08 or their $362.42+17$. or their $15.82+364$.
	Additional Guidance		
	Do not apply a misread or allow follow through if this results in a subtraction of either two 2 decimal place values or two 1 decimal place values		

5(b)	18.72	B1	oe eg 18.720

Question	Answer	Mark	Comments

6	$(2,5)$ or $(8,5)$	B2	B1 correct point indicated or $(x, 5)$ or $(2, y)$ or where x can be x or bla other than 13 and y can any number	grid , y), k or any number be y or blank or
	Additional Guidance			
	Mark answer line first, then if no marks scored, check grid for B1 plot			
	No tolerance on values of 2 or 8 for B 2 but allow half a square tolerance on plotting for B1			

7	$7+5 \text { or } 12$ or 17 or 36	M1		
	19 or 19.00	A1	19.0 is M1A0	
	Additional Guidance			
	Ignore names if used			
	Condone $£ 19$ p or $£ 19.00$ p			M1A1

| 8(a) | 29 | B1 | |
| :--- | :--- | :---: | :---: | :---: |
| | Additional Guidance | | |
| | Accept words | | |

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

9(a)	$1,2,3,6,9,18$	B2	B1 the 6 correct values, some or all repeated, with no incorrect values or 5 or 6 correct values with up to 2 incorrect values or 4 correct values with 0 or 1 incorrect values or 3 correct values with 0 incorrect values	
	Additional Guidance			
	Use of products or 'coordinates' is B1 max for at least 2 correct products with 0 or 1 incorrect products$\begin{aligned} & \text { eg } 1 \times 18,2 \times 9,3 \times 6 \\ & \text { eg } 1 \times 18,2 \times 9,3 \times 6,4 \times 4 \end{aligned}$			B1 B1
	Lists with repeated values cannot score B2, but ignore repeated values in any format for B1 eg 1, 2, 3, 3 eg $1 \times 18,2 \times 9,3 \times 6,18 \times 1,9 \times 2,6 \times 3$			B1 B1
	If a prime factor 'tree' or similar is used, factors must be identified			

Question	Answer	Mark	Comments

9(b)	60	B2	B1 any common mult eg 120, 180 B1 at least the first for each of 12 and 15 first two) B1 (12 =) 2(x)2(x)3 and $2(\times) 2(\times) 5(\times) 3((\times)$ equivalent work seen diagram)
	Additional Guidance		
	Answer 60 with error(s) seen may be B0 or B1 but cannot be B2 These error(s) may occur after the 60 - but cannot be ignored		
	If they have listed both multiples and factors, they must choose multiples to score		
	For B2, 60 must be chosen and not just at the end of a list of multiples		

Question	Answer	Mark	Comments

10(a)	Alternative method 1			
	$820 \div 50$ or $82 \div 5$	M1	oe eg $1640 \div 100$ eg counting up in 50 s to at least 800 (allow one error) eg counting down in 50s to less than 50 (allow one error)	
	16.4 or 16+ or over 16	A1	oe eg 16 r 20 or 16 with 20 left allow 16 if 17 is final answer	
	17	A1ft	ft rounding up from a decimal, fraction or remainder with M1 awarded	
	Alternative method 2			
	850	M1		
	$850 \div 50$	M1dep	oe eg $85 \div 5$ eg counting up in 50s to try to achieve 850 (allow one error) eg counting down in 50 s to at least 50 (allow one error)	
	17	A1		
	Additional Guidance			
	Incorrect remainders or decimals or fractions cannot score the second mark eg $820 \div 50=16.2$ answer 17 Remainder or decimal not shown, leading to answer of 17 will score full marks eg $820 \div 50=16$. answer 17			M1A0A1ft M1A1A1ft
	A1ft cannot be scored if their division does not yield a remainder eg $820 \div 50=$ (exactly) 14 answer 14			M1A0AOft
	$800 \div 50$ or 16 implies M1 from Alt 1			
	$800 \div 50=16$ so 17 needed (oe)			M1A1A1
	If $82 \div 5$ is attempted, allow 16 r 2 or 16 with 2 left over for the first A1			

Question	Answer	Mark	Comments

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{6}{*}{10(b)} \& \(13 \times 450\) \& M1 \& \multicolumn{2}{|l|}{Accept repeated addition of thirteen 450s} \\
\hline \& \begin{tabular}{l}
Correct vertical method of long multiplication with 4500 correct or \\
Correct vertical method of long multiplication with at least one of 650 and 5200 correct \\
or \\
Correct set up of grid method with at least three of the four or six products correct \\
or \\
Correct set up of Gelosia method with at least three of the six products correct \\
or \\
\(10 \times 450=4500\) and \(3 \times 450=\) 1350 attempted with at least one correct \\
or \\
\(13 \times 400=5200\) and \(13 \times 50=650\) attempted with at least one correct
\end{tabular} \& M1dep \& \multicolumn{2}{|l|}{\begin{tabular}{l}
oe \\
Allow a placeholder space to be present instead of a physical zero in vertical method
\end{tabular}} \\
\hline \& 5850 \& A1 \& \& \\
\hline \& \& ditional \& idance \& \\
\hline \& For repeated addition method, to sc with a 6 carried into the hundreds co \& M1dep mn \& answer must end in 50 \& \\
\hline \& \begin{tabular}{l}
Students may choose to multiply 13 method marks. We do not need the method mark, so \(13 \times 45\) scores at eg \(13 \times 45=585\) scores M2 even eg \(13 \times 45\) vertical method with 45 520 correct \\
eg \(13 \times 45\) using grid method with with three of the four products corre \\
eg \(13 \times 45\) using Gelosia method three (of the now four) products corr
\end{tabular} \& 45 usin ro to be ast M1 answer correct or and 5 no zer t \& \begin{tabular}{l}
any method, for the covered for either \\
gives 585 \\
at least one of 65 and \\
her than 400, 50 and 0 , \\
column, with at least
\end{tabular} \& M2
M2

$M 2$

\hline
\end{tabular}

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

12	Alternative method 1		
	$300 \div 10$ or 30	M1	oe
	their 30×6.5 or their $30 \times 6+$ their $30 \div 2$ or 300 - their 30×3.5 or 300 - (their $30 \times 3+$ their $30 \div 2$)	M1dep	oe
	195	A1	SC2 105
	Alternative method 2		
	$300 \div 100$ or 3	M1	oe
	their 3×65 or $300-$ their 3×35	M1dep	oe
	195	A1	SC2 105
	Alternative method 3		
	Correct method to work out any multiple of 5% of 300 up to 95%	M1	eg $50 \%=300 \div 2$
	Fully correct build-up method to work out 65% of 300	M1dep	$\begin{aligned} & \text { eg } 300 \div 2+3 \times 300 \div 20 \\ & \text { or } 150+3 \times 15 \\ & \text { (no errors seen) } \end{aligned}$
	195	A1	SC2 105
	Alternative method 4		
	$65 \div 100$ or 0.65 or 65×300 or 19500	M1	
	$300 \times \frac{65}{100}$ or $300 \times$ their 0.65 or their $19500 \div 100$	M1dep	oe
	195	A1	SC2 105
	Additional Guidance is on the following page		

Question	Answer	Mark	Comments

12 cont	Additional Guidance	
	In Alt 3, either a correct method or a correct value must be seen for the first M1 Note that $300 \times 50 \%$ is not allowed as a correct method	
	If Alt 3 is to be used, the percentage that is attempted must be stated eg $20 \%=300 \div 5$	
	Do not ignore further working for the A mark $\text { eg } 300-195$	M1M1A0

13	125	B1	
14	$5 \times 7 \times 10$	M1	
	350	A1	
	Additional Guidance		
	Ignore further "method" for M1 eg $5 \times 7 \times 10 \div 2=175$ however $5 \times 7 \times 10 \times 5 \times 7 \times 10$ or 350^{2} is M0A0	M1A0	
	ignore units		

$\mathbf{1 5}$	cylinder	B1	

Question	Answer	Mark	Comments

16(a)	No and correct reason or No and correct description of correct method or No and $280\left({ }^{\circ}\right)$	B1	eg No, he has done B from A No, the North line should go from B	
	Additional Guidance			
	Ignore non-contradictory, irrelevant responses alongside a correct response			
	Answer must either include 'No' or 'Kemal is wrong' oe			
	Ignore diagram if B1 scored from answer lines			
	No, it is 280			B1
	No, should start / measure from B			B1
	No, it's from the wrong point			B1
	Kemal is wrong, he started from A (and went to B)			B1
	No and a correct method/drawing shown in either box			B1
	No, the bearing should be reflex			B1
	No, he did A to B (not A from B)			B1
	No, should be anticlockwise			B0
	No, measured the wrong way around			B0
	No, bearing would be 260			B0
	(It should be) 280 (not sufficient to imply 'no')			B0
	No, he measured from A which is 100 but you're meant to measure from B which is 170			B0
	Bearing should start from B (should is not sufficient to imply 'no')			B0
	Not measured from B			B0
	Started from A (and went to B)			B0
	No, it's from the wrong place			B0

Question	Answer	Mark	Comments

16(b)	No and correct reason	B1	eg No, it's North No, NW is $315\left({ }^{\circ}\right)$	
	Additional Guidance			
	Reasoning may be seen on diagram. The angles do not need to be accurate if intention is clear.			
	No, you've gone anticlockwise			B1
	No, NW lies between 270 and 360 (but 045 is between 0 and 90)			B1
	No, D is NE of C			B1
	Do not accept incorrect statements eg No, North West is 225°			B0
	No, C is SW of D (true but not referencing what Nina says)			B0
	045 is NE			B0
	D is NE of C			B0
	No, it will be larger			B0

Question	Answer	Mark	Comments

16(c)	Line drawn due South from E (any length) or $[4.3,5.1]$	M1	mark intention on 'south' mark intention on 'line' accept a cross on coast roughly south of E	
	their value $\times 100$	M1	$\begin{aligned} & {[430,510] \text { implies M2 }} \\ & \text { eg } 1.3 \times 100 \end{aligned}$	
	[450, 490] and correct for their value	A1	SC1 600 [450, 490] scores M1M1A1 unless error seen	
	Additional Guidance			
	Line drawn or no line drawn and $4.6 \times 100=465$ (within range but not correct for their value)			M1M1A0
	No line drawn and $4.2 \times 100=420$			M0M1A0
	600 may score up to M2, only award SC1 if M0 scored			
	If line goes North as well as South of E, working must choose the South direction length (in range) for at least 1st M1 (but 2nd M1 could still be scored)			
	If line does not reach coast or goes beyond coast, full marks can still be awarded for a correct method with correct answer within range			
	Ignore units throughout eg $4.8 \times 100=480 \mathrm{~cm}$			M1M1A1

$\mathbf{1 7 (a)}$	$28: 12$ or $14: 6$ or $56 \div 8$ and $24 \div 8$ (may be done in stages) or 3 and 7 seen	M1	
	$7: 3$	A1	

$\mathbf{1 7}(b)$	$1.25: 1$	B1	oe eg $\frac{5}{4}: 1$

Question	Answer	Mark	Comments

17(c)	$180 \div(1+9)$ or 18 or 162	M1		
	18 and 162	A1		
	Additional Guidance			
	162 and 18			M1A0
	Build-up method will score 2 or 0 eg 1 : 9 $2: 18$ does not score M1 for 18			

Question	Answer	Mark	Comments

$\begin{gathered} 18 \\ \text { cont } \end{gathered}$	Average listening time statements	
	The over 41s had a higher mean	B1
	Over 41s listened for 5.1h more (on average)	B1
	Over 41s listened longer (on average) than the 40s and under	B1
	41+ longer listening (on average)	B1
	(More/most) 40s and under listened less than the over 41s (on average)	B1
	Average listening 5.1 hours difference	B0
	Spread of listening time statements	
	The over 41s had a higher range	B1
	More of a time gap in the over 41s than the 40s and under	B1
	Over 41s have a higher spread	B1
	40s and under times are closer together than over 41s	B1
	Over 41s have a wider listening time range	B1
	The 41 and over listening time gap was high, the under 40 listening time gap was low	B1
	40 and under is $4.5,41$ or over is 13.9	B1
	40 and under listen to the radio 4.5 hours, 41 or over listen to the radio 13.9 hours	B0
	The difference in range is 9.4	B0
	Listening times were quite close together	B0
	The 41 and over listening times gap was high	B0

Question	Answer	Mark	Comments

19(a)	5	B 1	
	Additional Guidance		
	Condone $10-5=5$	B 1	
	Condone $x=5$	B 1	
	$\frac{10}{2}$	BO	

19(b)	-10	B 1	

Question	Answer	Mark	Comments

19(c)	Unsimplified expression in a, b and c which would evaluate to 23	M1	eg $2(4 a-2 b)+a+c$ or $8 a-4 b+a+c$ or $11(a+c)-(4 a-2 b)$ or $11 a+11 c-4 a+2 b$	
	Simplified expression in a, b and c which would evaluate to 23	A1	eg $\begin{aligned} & 9 a-4 b+c \\ & 7 a+2 b+11 c \end{aligned}$ SC2 Values assigned to a, b and c which satisfy original equations and expression given which has value 23 eg $a=3, b=1, c=0$ and $7 a+2 b+c$	
	Additional Guidance			
	There are infinitely many correct solutions. Allow solutions where the coefficients are not integers if initial working is shown. eg $3(4 a-2 b)-\frac{7}{3}(a+c)=\frac{29}{3} a-6 b-\frac{7}{3} c$			M1A1
	$5 a-2 b+c+10=23$			M1A1
	Condone ' $=23$ ' after the expression			
	Answer using only two variables eg 2.3(4a-2b)			MOAO

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

21(b)	Alternative method 1: $\mathbf{P (1)}+\mathrm{P}(4,5$ or 6$) \times \mathrm{P}(\mathrm{Odd})$		
	$\frac{1}{2} \times$ their $\frac{1}{2}$ or $\frac{1}{4}$	M1	oe
	their $\frac{1}{4}+$ their $\frac{1}{6}$	M1dep	oe
	$(P($ win $)=) \frac{10}{24}$ or $\frac{5}{12}$	A1ft	oe ft their tree diagram
	Lose (and P(Lose) $=\frac{14}{24}$ or $\frac{7}{12}$ oe)	A1ft	ft correct decision for their $\frac{5}{12}$ (and their $\frac{7}{12}$) with M2 scored
	Alternative method 2: $1-\mathrm{P}(2$ or 3)-P(4, 5 or 6$) \times \mathrm{P}($ Even)		
	$\frac{1}{2} \times$ their $\frac{1}{2}$ or $\frac{1}{4}$	M1	oe
	$\begin{aligned} & \text { their } \frac{1}{4}+\text { their } \frac{1}{3} \\ & \text { or } \mathrm{P}(\text { lose })=\frac{7}{12} \end{aligned}$	M1dep	oe ft their tree diagram
	$(P($ win $)=) \frac{10}{24}$ or $\frac{5}{12}$	A1ft	oe ft their tree diagram
	Lose (and P(Lose) $=\frac{14}{24}$ or $\frac{7}{12}$ oe)	A1ft	ft correct decision for their $\frac{5}{12}$ (and their $\frac{7}{12}$) with M2 scored
	Additional Guidance is on the following page		

Question	Answer	Mark	Comments

21(b)cont	Additional Guidance	
	Check the tree diagram for working	
	Any 'their' or ft probability must be > 0 and < 1 for marks to be awarded	
	For the second A1ft, the ft can be from an incorrect tree (which may score 4 marks) or an arithmetic error (which scores 3 marks, M1M1A0A1ft)	
	Accept equivalent fractions or decimals within calculations and equivalent fractions, decimals or percentages for final probabilities	
	Accept decimals or percentages rounded or truncated correctly to at least 2 significant figures	
	Condone $\frac{1}{2} \times$ their $\frac{1}{2}$ as part of a longer, incorrect multiplication eg $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{6}$	M1M0A0A0
	Condone decimals used within fractions $\text { eg } P(\text { Win })=\frac{2.5}{6}$	at least M1M1A1
	For the method marks, condone incorrect mathematical notation eg $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}+\frac{1}{6}=\ldots$	at least M1M1 (may go on to score 3 or 4 marks)
	For the second A 1 ft , if the student gives a value for P (Lose), their $\mathrm{P}($ Win $)$ + their $\mathrm{P}($ Lose $)$ must equal 1 However, allow a comparison to $\frac{1}{2}$ unless it is clearly an incorrect value for P (Lose)	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

23	$\left(3^{12}=\right) 531441$ or $\left(3^{5}=\right) 243$ or $\left(3^{12} \div 3^{5}=\right) 3^{7} \text { or }\left(3^{12} \div 3^{5}=\right) 2187$ or $\left(3^{2} \times 3=\right) 3^{3} \text { or }\left(3^{2} \times 3=\right) 27$ or $3^{12} \div 3^{5} \div 3^{2} \div 3$ or $\frac{3^{12}}{3^{5}} \times \frac{1}{3^{2} \times 3}$	M1		
	$3^{7} \div 3^{3} \text { or } 3^{7} \div 27$ or $3^{(12-5-2-1)}$ or $\frac{3^{12}}{3^{8}}$ or 3^{4} or $2187 \div 27$	M1dep	oe in the form $3^{n} \div 3^{(n-4)}$	
	81	A1		
	Additional Guidance			
	3^{4} and 81 on the answer line in either order			M1M1A1
	81 in working and 3^{4} on the answer line			M1M1A0

Question	Answer	Mark	Comments

24(a)	$-a$	B 1	

24(b)	$\frac{1}{c}$	B 1	

Question	Answer	Mark	Comments

Alternative method 1: areas

$\pi \times 10^{2}$ or 100π	M1	implied by [314, 314.2]
$\pi \times(8 \div 2)^{2}$ or $\pi \times 4^{2}$ or 16π or $\pi \times(8 \div 2)^{2} \div 2$ or $\pi \times 4^{2} \div 2$ or $16 \pi \div 2$ or 8π	M1	implied by [50.2, 50.3] or [25.12, 25.14] 92π or 84π or $92: 8$ or $8: 92$ or $84: 16$ or $16: 84$ implies M1M1
(their $100(\pi)$ - their $8(\pi)) \div$ their $8(\pi)$ or $92(\pi) \div 8(\pi)$ or their $100(\pi) \div$ their $8(\pi)(-1)$ or $12 \frac{1}{2}(-1)$ or $12.5(-1)$	dep on M2 absence of π must be consistent condone $16(\pi)$ as their $8(\pi)$ in first calculation only, ie condone (their $100(\pi)-$ their $16(\pi)) \div$ their $16(\pi)$ or $84(\pi) \div 16(\pi)$, but not their $100(\pi) \div$ their $16(\pi)(-1)$	
$11 \frac{1}{2}$ or 11.5	A1	condone $\frac{23}{2}$

Alternative method 2: scale factor

$\frac{10}{8 \div 2}$ or $\frac{10}{4}$ or $\frac{5}{2}$	oe scale factor of lengths eg $\frac{2}{5}$ or 0.4	
or $\frac{10 \times 2}{8}$ or $\frac{20}{8}$ or 2.5	M1	π may be present, but must be consistent in numerator and denominator
(their $\left.\frac{5}{2}\right)^{2}$ or $\frac{25}{4}$	M1dep	oe scale factor of areas eg $\frac{4}{25}$
accept $4: 25$ or $25: 4$ oe ratio		

Question	Answer	Mark	Comments

$\stackrel{25}{\text { (cont) }}$	Additional Guidance	
	Accept, for example, $\pi 8$ or $\pi \times 8$ or $8 \times \pi$ for 8π	
	An answer of 11.5π with no incorrect working	M1M1M1A0
	Consistent use of πd^{2} for the area of a circle gives the area of the circle as 400π, the area of the semicircle as 32π and the area of the shaded part as 368π. This also gives the answer 11.5 , but scores zero	MOMOMOAO
	Irrespective of where their answer comes from and the presence of other measures such as circumference, students can gain the first two marks of alternative method 1 if it is clear that the methods or values given are for area eg 1 Big area $=100 \pi$, little area $=8 \pi$, big circumference $=20 \pi$, little circumference $=4 \pi, 20 \div 4=5$ eg 2 $100 \pi, 8 \pi, 20 \pi, 4 \pi$	M1M1M0A0 MOMO
	Do not award the second mark if the value of 8π comes from πd This is implied by, eg, 'Area of circle $=20 \pi$, area of semi-circle $=8 \pi$ '	M?MO MOMO
	$\frac{100(\pi)-16(\pi)}{16(\pi)}$ (which may give an answer of 5.25)	M1M1M1A0
	$\frac{100(\pi)}{16(\pi)}$ (which may give an answer of 6.25)	M1M1M0A0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

26(b)	Vertical line from $3 \frac{1}{2}$ minutes to their graph Correct reading from their graph for $t=3.5$	M1	$\pm \frac{1}{2}$ small square implied by mark at correct place on the graph or on the vertical axis (but not on the horizontal axis) or by correct reading from their graph	
		A1ft	ft their graph $\pm \frac{1}{2}$ small square	
	Additional Guidance			
	Correct reading for their graph, with or without evidence of using graph			M1A1
	No graph in (a)			MOAO
	To score any marks, their graph must be decreasing in the domain $1 \leqslant t \leqslant 4$, but may be a straight line or series of connected straight lines			
	Answer from $60 \div 3.5$ with no graph, or which does not match graph			MOAO
	Reading from 3.3			MOAO

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

28	$x^{2}+5 x-x-5$	M1	three or four terms with three correct $x^{2}+4 x+k$ implies M1	
	$x^{2}+4 x-5$	A1		
	Additional Guidance			
	Further work, eg $x^{2}+4 x-5=5 x-5$			M1A0
	$y=x^{2}+4 x-5$ or $x^{2}+4 x-5=0$			M1A0
	$x^{2}+4 x-4$			M1A0
	$x^{2}+4 x$			M1A0
	Condone $1 x$ for x eg $x^{2}+5 x-1 x-5$			at least M1
	Terms may be seen in the grid method or in a list where a plus sign can be implied			

