

GCSE MATHEMATICS 8300/1F

Foundation Tier Paper 1 Non-Calculator

Mark scheme

November 2018

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. How ever, registered schools/colleges for AQA are permitted to copy material from this booklet for their ow n internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknow ledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ое	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments
1	-11	B1	
2	Mode	B1	
3	0.95	B1	
4	Circumference	B1	

Question			Answer		Mark	Comments
	Altorn	otivo m	othod	1		
	Altern		ethod	1		
	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					at least one row correct, with the 0 correct for multiplication by the multiple of 10
	or × 83 × 83 2080				M1	you may see the rows of working switched
	their 498 + their 1660					
5	or their 78 + their 2080				M1dep	
	2158				A1	
	Alternative method 2			2		
		20	6			at least three of the calculated values correct
	80	1600	480		M1	may be seen as 4 calculations, not in a grid
	3	60	18			
	their 1 their 1	600 + tř 8	neir 480	+ their 60 +	M1dep	
	2158				A1	

Question	Answer	Mark	Comments		
	Alternative method 3				
	2 6 1 4 6 8 0 1 6 8	M1	at least three of the calc correct	ulated values	
	Total calculated for each diagonal with at least one correct carrying figure	M1dep	clear attempt to add eac	h diagonal	
	2158	A1			
	Add	itional G	uidance		
	20 × 80 + 6 × 3 (= 1618)	MOAO			
5 cont	Alternative method 1: if the place holde this to be evidenced by their 8 as the u in place of the 0				
	Alternative method 2: if numbers are but at least 8 of the calculated values corrected 40 40 3 and 10 10 6 (ie a maximum				
	Alternative method 3: diagonals must slope the correct way for M1 (unless recovered)				
	Diagonal lines not present is M0 unless correct totals around the grid				
	Example of alternate method 3 with car $ \begin{array}{c} 2 & 6 \\ 1 & 6 & 4 \\ 0_1 & 1 & 6 \\ 11 & 6 & 1 \\ 5 & 8 \\ \end{array} $	M1M1depA0			

Question	Answer	Mark	Comments		
	18÷3 or 6		oe		
	or				
	18 × 5 or 90	M1			
	or				
	5				
	3				
6	30	A1			
	Additional Guidance				
	$18 \times 10 \div 6$ with incorrect or no answe	M1A0			
	Decimals for $\frac{5}{3}$ must be correct to 1dp				
	$18 \div \frac{3}{5}$ is M1 but $\frac{3}{5}$ alone is M0				

	3206 ÷ 7	M1	may be seen as a calculation attempted such as in the 'bus stop' method		
	458	A1			
	Additional Guidance				
7	7 ÷ 3206 must be recovered eg by correct use in division sum				
	"Chunking" or build-up must convince that the equivalent to the full division is being attempted (ie reach or go beyond 3206)				
	Condone 3206 ÷ 420 (working in seconds) for M1				
	Accept $\frac{3206}{7}$ for M1 unless contradicted by further work				

Question	Answer	Mark	Comments		
	Total for Caroon 2 is 201	D4			
	Total for Screen 2 is 261	BJ			
	Total is 348	B1ft	ft 87 + their 261		
	Full price for Screen 1 is 72	B1			
	Child price for Screen 2 is 53	B1			
	Full price for Screen 2 is 208		ft if their full price value their child price value fo to their total for Screen	for Screen 2 and or Screen 2 sum 2	
		B1ft	or		
			their two full price value child price values sum t total	s and their two to their overall	
	Addi				
8	Mark the diagram, but if diagram comp working only if absolutely clear which e				
	Example of final B1ft: Screen 2 Child F as Screen 2 full price				
	Screen Price Full 72 Screen 1 348 Screen 2 261 Child 15 Screen 2 261 Child 53			B5	

Question	Answer	Mark	Comments		
	Alternative method 1				
	$(1\frac{1}{4}) = \frac{5}{4}$	M1	oe improper fraction		
	$\begin{array}{c} \underline{4} \\ \underline{4} \\ 8 \end{array} \text{ and } \begin{array}{c} \underline{10} \\ \underline{0} \\ 8 \end{array} \text{ or } \begin{array}{c} \underline{2} \\ \underline{2} \\ \underline{10} \\ \underline$		oe common denominator with at least one correct numerator		
	or 3.5	M1dep	may be seen as start and end of a list		
	<u></u>				
	<u>7</u> 8	A1	oe fraction		
	Alternative method 2				
	$(1\frac{1}{4}-\frac{1}{2}=)\frac{3}{4}$	M1	oe		
9	$\frac{1}{2}$ + their ($\frac{3}{4}$ ÷ 2)				
	or 1 $\frac{1}{4}$ – their ($\frac{3}{4}$ ÷ 2)	M1dep	Oe		
	<u>7</u> 8	A1	oe fraction		
	Alternative method 3				
	$(1\frac{1}{4} + \frac{1}{2} =) 1\frac{3}{4} \text{ or } \frac{7}{4}$	M1	oe		
	their $1\frac{3}{4} \div 2$ or their $\frac{7}{4} \div 2$	M1dep	Oe		
	<u>7</u> 8	A1	oe fraction		

Question	n Answer Mark Comments				
	Alternative method 4				
	(1.25 – 0.5 =) 0.75 or (1.25 + 0.5 =) 1.75	M1	accept equivalent in percentages but must see % sign		
9 cont	(0.5 + 0.75 ÷ 2 =) 0.875		0.875 must be correct		
	or (1.25 – 0.75 ÷ 2 =) 0.875 or	M1dep	accept equivalent in percentages but must see % sign		
	(1.25 + 0.5 2 =) 0.875 or 87.5%				
	<u>7</u> 8	A1	oe fraction		
	Alternative method 5				
	Positions of $\frac{1}{2}$ and $1\frac{1}{4}$ correctly marked on line or correct midpoint marked on line	M1	if more points are marked, labels of $\frac{1}{2}$ and $1\frac{1}{4}$ must be given or indicated mark intention in terms of exact position		
	Correct midpoint marked on line		accept decimals or equivalent fractions		
	and $\frac{3}{4}$ marked as $\frac{6}{8}$ and 1 marked as $\frac{8}{8}$	M1dep	oe fractions with common denominator > 4		
	<u>7</u> 8	A1	oe fraction		
	Additional Guidance				
	In alternative method 5: $\frac{1}{4}$ marked	at $1\frac{1}{4}$ is s	sufficient for $1\frac{1}{4}$		
	In all schemes, award of M1dep mean	s that M2	is awarded		
	Use the scheme that gives the greates errors in the scheme(s) you do not use	t number e	of marks – ignore		

Question	Answer	Mark	Comments		
10	1, 5, 7 and 35	B2	any order B1 for any two or three	correct values	
	Additional Guidance				
	Their correct values must be identified as answers, and not given in, for example, a list of the first ten integers or as values in a calculation				
	If more than 4 answers given, maximum B1 if at least two correct				

	$\frac{5}{6}$	B1	oe fraction, decimal or pallow 0.83(3) or 83(percentage 3…)%
11(a)	Additional Guidance			
	Ignore use of probability words unless contradictory			

11(b)	2, 3, 4, 5 and 6 identified	M1			
	20	A1			
	Additional Guidance				
	Values are identified even if used in a wrong calculation				
	eg 2 × 3 × 4 × 5 × 6 or answer 23 456				
	20 is M1A1 unless clearly obtained from wrong working				

12	1 1 7	B1	
40	40	D4	
13	18	B1	
14	13	B1	

Question	Answer	nts		
			Γ	
	<i>ADC</i> = 110		may be seen on diagra	m
	or			
	<i>BAD</i> = 180 – 110 or <i>BAD</i> = 70			
	or			
	<i>BCD</i> = 180 – 110 or <i>BCD</i> = 70			
	or	IVI1		
	any indication that angle EAD = angle EDA		eg both written as <i>x</i> or same value	both having the
	or			
	any indication that angle <i>BCD</i> = angle <i>ADE</i>			
	<i>EDA</i> = 180 – 110 or <i>EDA</i> = 70		may be seen on diagra	m
	or EAD = 180 – 110 or EAD = 70	Midep		
15	40	A1		
	Ado			
	Angle values must be identified with the notation or use of the diagram	he correct	angle, either by	
	Notation such as $D = 110$ or $C = 70$ is may still be awarded for correct positi			
	Work on the diagram can score up to			
	Subject to the previous comment, awa on diagram and work seen in working	ner mark for work seen		
	Ignore incorrect angles when awardin cannot score M2A1	, but any incorrect work		
	40 marked as angle AED on diagram	but :-		
	180 on answer line or no sign of 4	0 as final a	nswer in working	M2A0

Question	Answer	Mark	Commer	nts						
			I							
	3:18 or 18:3 or $\frac{1}{3}$:1 or 1: $\frac{1}{3}$ or 6×3	M1	oe both ratios correctly scaled so that the values for <i>a</i> are equal (ignore additional scaling) eg 6 : 36 and 6 : 2							
16	18	A1								
	Additional Guidance									
	Do not accept words instead of ratios									
	Accept embedded answers eg $b = 18$	M1A1								
	1:6 2:12 3:18 4:24 (etc)	M1								
	18 – 3 (= 15) M1A0									

Question	Answer Mark Comments									
	Ticks 'No' and gives correct explanation indicating her error	eg It should be 0.03 0.3 would give 30% It's 10 times too big You need to divide by 7	10 as well							
	Additional Guidance									
	'Yes' ticked			B0						
	If 'No' is not ticked, explanation must statement is incorrect									
	'No' not ticked and 'it should be 0.03'	B0								
17(a)	'No' not ticked and 'it should be 0.03	B1								
	It is not sufficient to only show a differ	t method,								
	eg 'No' and 'divide by 100 and multip	B0								
	eg 'No' and 'she has divided by 10 ar have divided by 100 then multiplied by	B1								
	'No' and '1700 \times 0.03' (a correction o	f Laura's m	nethod)	B1						
	Calculating the correct answer must c Laura's method	come with t	he correct evaluation of							
	eg 'No' and 'should be 51'			B0						
	eg 'No' and 'Laura gets 510 but it sho	uld be 51'		B1						

Question	Answer Mark Comments							
	Ticks 'No' and gives correct explanation	B1	eg $\frac{30}{29}$ is bigger than 1 58 is from $\frac{29}{30}$ the answer would have 60 it will be a decimal	to be bigger than				
	Ado	ditional G	uidance					
	'Yes' ticked			B0				
	'60 doesn't divide by 29' oe		B0					
	'No' ticked and 'the numerator and de	are wrong way round'	B1					
17(b)	If 'No' is not ticked, explanation must statement is incorrect							
	'No' not ticked and 'it should be more	B0						
	'No' not ticked and 'it should be more	B1						
	'No' ticked and 60 ÷ 29 = 2.(…) the accept 2 r2 for 2.(…)	n 2.() × 3	30 = [60, 70)	B1				
	'No' ticked and 30 ÷ 29 = 1.() and 1 accept 1 r1 for 1.()	.() × 60	= [60, 70)	B1				
	'No' ticked and 'because it's a top hea	avy fraction	, I	B0				
	'No' ticked and 'because it's a top hea	avy fraction	n so it's bigger than 1'	B1				
	'No' ticked and '1 $\frac{1}{29}$ × 60 '			BO				
	'No' ticked and '1 $\frac{1}{29} \times 60$ so the answ	ver is over 6	60'	B1				

Question	Answer	Mark	Comments				
18	ξ Q E C D	B3	D can be anywhere inside the rectangle and outside the circles B2 for 3 or 4 letter positions correct B1 for 1 or 2 letter positions correct				
	Ado	ditional G	uidance				
	Accept names of shapes written on diagram but do not accept first letter only (ambiguous)						
	Duplicating a letter in more than one region is choice and that letter cannot be counted as correct						
	Ignore anything written outside the re	ctangle					

Question	Answer	nts		
	3.5 or $3\frac{1}{2}$ or 49 or $(49 =) \frac{98}{2}$	M1		
	3.5 - 49 or 49 - 3.5 or $3\frac{1}{2} - 49 \text{ or } 49 - 3\frac{1}{2}$ or $\frac{7}{2} - \frac{98}{2} \text{ or } \frac{98}{2} - \frac{7}{2}$	M1dep	45.5 (oe) implies M2	
19	-45.5 or -45 $\frac{1}{2}$ or $-\frac{91}{2}$	A1		
	Ado			
	$\frac{7}{2}$ without $\frac{98}{2}$	MO		
	7 ² without 49	MO		
	$\frac{7}{2}$ – 7 ² (no further correct work)	MO		
	$7^2 = 14, \ 3.5 - 14 = -10.5$		M1M0A0	
	$\frac{7}{2} - 49$	M1		
	$3.5 - 7^2$			M1

Question	Answer	Commer	nts						
	Alternative method 1								
	3x = 19 + 8 or $3x = 27or(19 + 8) \div 3 or \frac{27}{3}$	M1	accept in 'flow chart' eg $(x \rightarrow) \times 3 \rightarrow -8 \rightarrow 19$ and $\leftarrow \div 3 \leftarrow +8 \leftarrow 19$	enough for M1					
	9	A1							
20	Alternative method 2								
	$x - \frac{8}{3} = \frac{19}{3}$	M1							
	9	A1							
	Additional Guidance								
	3 × 9 – 8 (= 19)	M1A0							

Question			Ansv	wer			Mark	Comments
	Alter	native	Meth	od 1				
21	Lists comb outco way t eg 17 an 17 an 17 an 12 an 12 an 12 an 23 an 23 an 15 an 15 an 15 15	at leas ination mes c able ad 12 ad 23 ad 15 ad 16 ad 15 ad 16 ad 15 ad 16 ad 12	st 5 co ns or a or cons or 29 or 40 or 32 or 33 or 35 or 27 or 28 or 38 or 39 or 31 12 2	or a 15	16	rect ct two-	M1	outcomes may be seen in the two-way table ignore additional combinations such as 17 and 17 for M1 ignore any totals in a correctly constructed two-way table 17 and 12 & 12 and 17 are accepted as two different combinations
	Fully correct list or two-way table eg 29, 40, 32, 33, 35, 27, 28, 38, 39, 31 or 40, 32, 33, 35, 38, 39, 31 or				ay tab , 38, 3 , 31 o	ile 39, 31 ir		accept ticks/crosses with correct pairs instead of values in the two-way table, it is acceptable to have only one set of ten cells completed (ten right or bottom left) if all correct
	1	17	12	23	15	16		
	17		29	40	32	33	A1	accept ticks and/or crosses in cells
	12	2		35	27	28		
	23	40	35		38	39		do not accept incorrect combinations such as 17 and 17 for A1
	15	32	27	38		31		
	16	33	28	39	3			

	$\frac{7}{10} \text{ or } 0.7 \text{ or } 70\%$ Alternative Method 2	A1ft	oe ft their list or two-way table with M1 scored and a probability > 0 and < 1
	States that outcomes of 30 or under may only be achieved by using the 12	M1	oe
21cont	Lists the three (or six) combinations which give outcomes of 30 or under 12 and 15 (15 and 12) 12 and 16 (16 and 12) 12 and 17 (17 and 12) or Lists the three outcomes of 30 or under (may be repeated) 27 28 29	A1	
	7/10 or 0.7 or 70%	A1ft	oe ft their list with M1 scored and a probability > 0 and < 1 eg if only 27 and 28 found and answer 0.8 given score M1A0A1ft

The Additional Guidance for Q21 is on the next page

				A	dditior	nal G	uidano	ce					
	Correct answer with	h no	incorr	ect wo	orking				M1A1A1				
	If work is crossed c and these should s												
	This example show												
			17	12	23	15	16						
		17		29	40	32	33						
		12	29		36	27	28		M1A0A1ft				
		23	40	3		37	39						
		15	32	27	37		31						
	16	16	33	28	39	3							
21cont		and answer of 0.7											
	This is an examp	ole of	follow	ing thi	rough	from t	heir tal	ble to give A1ft.					
			17	12	23	15	16						
		17		29	40	32	33						
		12	29		35	27	28		M1A0A1ft				
		23	40	3		38	39						
		15	32	27	37		21						
		16	33	28	39	2							
		-											
	Ignore use of probat	bility	words	unles	s cont	radicto	ory						

Question			Ans	wer			Mark	Comments
22(a)	x y	-2 4	-1 1	0	1	2 4	B1	

	Plots their points correctly or restarts with 4 or 5 correct points plotted	M1	$\pm \frac{1}{2}$ square tolerance allow one error	
	Correct graph	A1	smooth quadratic curve through points	
	Ado	Buidance		
22(b)	Allow $\pm \frac{1}{2}$ square tolerance for curve	nrough points		
	If their points do not form a quadratic	s maximum M1		
	The 'base' of the quadratic curve should be a smooth fairly flat curve, not a pointed shape			
	Ignore additional points beyond $x = 2$	2		
	Ignore extended graph beyond $x = 2$	and $x = -2$	2	

	Draws a horizontal line from 2.6 on the <i>y</i> -axis to their graph	M1	implied by correct vertical line down to the <i>x</i> -axis from correct point or at least one correct value seen for their graph		
	Correct readings from their graph				
	Additional Guidance Positive value only or negative value only given Tolerance on readings of $\pm \frac{1}{2}$ square				
22(c)					
	It is sufficient, for M1, for the horizontal line to meet the graph once				
	No graph and answer of 1.6			MOAO	

Question	Answer	Mark	Comments		
23(a)	-1	B1			
23(b)	$n^2 + n$ or $n + n^2$ Add Accept $1n^2 + 1n$ or $1n^2 + n$ or $n^2 + 1n$	B1 ditional G	uidance	B1	
	Do not accept $n \times n + n$ or $n^2 + n^1$			B0	
	Alternative method 1				
	(n + n + 1 =) 2n + 1 and states that $2n$ is even and states that even $+ 1 = \text{odd or}$ even $+ \text{odd} = \text{odd}$	B2	B1 (<i>n</i> + <i>n</i> + 1 =) 2 <i>n</i> + 1		
	Alternative method 2				
23(c)	States that one of the numbers is even and the other is odd and states that even + odd = odd	B2	B1 states that one of the nu and the other is odd or states that even + odd =	mbers is even odd	
	Additional Guidance				
	Numerical examples with no other ex	planation		B0	
	n+n+1=2n+1=3n			B0	

Question	Answer	Mark	Comments
24	$\frac{\sqrt{3}}{2}$	B1	

Question	Answer	Mark	Comments		
	Alternative method 1				
	$\frac{17}{2}$ or $\frac{8}{3}$	M1	oe fractions		
	their $\frac{17}{2}$ × their $\frac{3}{8}$	M1	conversion of both mixed numbers to improper fractions and multiplication of the conversion of $8\frac{1}{2}$ by the reciprocal of the conversion of $2\frac{2}{3}$		
	<u>51</u> 16	A1	oe fraction or decimal		
	3 <u>3</u> 16	B1ft	oe mixed number ft correct conversion of their improper fraction to a mixed number		
25	Alternative method 2				
	$\frac{17}{2}$ or $\frac{8}{3}$	M1	oe fractions		
	$\frac{51}{6} \div \frac{16}{6}$	M1	conversion of both mixed numbers to improper fractions, correct conversion to improper fractions with a common denominator and division of the conversion of $8\frac{1}{2}$ by the conversion of $2\frac{2}{3}$		
	<u>51</u> 16	A1	oe fraction or decimal		
	3 <u>3</u> 16	B1ft	oe mixed number ft correct conversion of their improper fraction to a mixed number		

The Additional Guidance for question 25 is on the next page

Question	Ans	wer	Mark	Comme	nts		
	Additional Guidance						
	Working with decimals						
	Ignore incorrect a eg 3 $\frac{3}{16}$ = 3 $\frac{1}{8}$	attempt to simplify a	mixed number		M1M1A1B1		
25 cont	$3\frac{3}{16}$ seen, then	51 on answer line 16			M1M1A1B0		
	$\frac{9}{2}$ and $\frac{8}{3}$,	$\frac{27}{6} \div \frac{16}{6},$	<u>27</u> 16,	1 <u>11</u> 16	M1M1A0B1ft		
	$\frac{9}{2}$ and $\frac{8}{3}$,	$\frac{27}{6} \div \frac{16}{6},$	1 <u>11</u> 16		M1M1A0B1ft		
	$\frac{9}{2}$ and $\frac{4}{3}$,	$\frac{27}{6} \div \frac{8}{6},$	<u>27</u> ,	$3\frac{3}{8}$	MOM1A0B1ft		

Question	An	swer	Mark	Commer	nts
	Alternative met	thod 1			
	Correct reading value	of at least one		may be seen on graph	
	at 0 hours	[46, 50]			
	at 1 hour	[63, 67]	M1		
	at 2 hours	[80, 84]			
	at 3 hours	[96, 100]			
	at 4 hours	[114, 118]			
	subtraction of two values correct number of hours		M1	division by 1 may be im	plied
	17		A1	SC1 29	
	Alternative method 2 A difference in the range may be see		-		
			may be seen on graph		
26	for 1 hour	[15, 19]			
	for 2 hours	[32, 36]	M1		
	for 3 hours	[49, 53]			
	for 4 hours	[66, 70]			
	di fference correct numberof	e f hours	M1	division by 1 may be implied	
	17		A1	SC1 29	
		Ado	ditional G	uidance	
	(119 – 42) ÷ 4 =	19.25			M0M1A0
	for 2nd M1 in Al recovered	t 1, subtraction must	be in the co	orrect order unless	
	17 does not imp eg (110 – 42) ÷	bly three marks, so wo	orking must	t be checked	M0M1A0

Question	Answer	Mark	Comme	nts
			-	
	8 and lowest (value)		oe	
	or	B1	Accept 102 for day 8	
	8 and outlier			
	Ado	ditional G	uidance	
	8 and '(Only 102 landed whereas) All	the other o	lays were over 140'	B1
	8 and 'Fewer (less) planes landed (th	an the othe	er days)'	B1
	8 and 'It's an anomaly'			B1
	8 and 'There was a (big) drop / reduc planes'	B1		
	8 and 'There were only 102 planes'	B1		
27(a)	8 and 'It's low' or 8 and 'It's lower' c	or 8 and 'It's	s too low'	B1
	8 and 'lt doesn't follow the trend (or p	attern)'		B1
	8 and 'lt reduces a lot that day'			B1
	Ignore a non-contradictory statement	with a corr	ect statement	
	eg 8 and It's the lowest, it dropped by	53'		B1
	Do not award B1 with a numerical err	or in the st	atement	
	eg 8 and 'It's the lowest by 40'			B0
	8 and 'There were 102 planes'			B0
	8 and 'There's a drop of 53 (implies a	point to po	pint comparison)'	B0
	8 and 'It's below average'			B0
	8 and 'It's the odd one out'			B0

Question	Answer	Mark	Comments		
	Alternative method 1				
	150 × 24 ÷ 4 or 150 × 6 or 900	M1	oe		
	their 900 × 365 or		for 365, allow 336, 360, 364, 366, 370 and 400		
	their 900 \times 7 \times 4 \times 12 or	M1dep			
	their 900 × 7 × 52 or 302 400 or 360 000				
	324 000 or 327 600 or 328 500 or 329 400 or 333 000	A1			
	Alternative method 2				
	365 × 150 or 54750 or	M1	for 365, allow 336, 360, 364, 366, 370 and 400		
27(b)	365 × any multiple of 150		54 900, 55 500 and 60 000		
	their 54750 × 24 ÷ 4 or 302400 or 360000	M1dep			
	324 000 or 327 600 or 328 500 or 329 400 or 333 000	A1			
	Alternative method 3				
	365 × (24 ÷ 4) or 365 × 6 or 2190	N/11	for 365, allow 336, 360, 364, 366, 370 and 400		
		IVII	for 2190, allow 2016, 2160, 2184, 2196, 2220 and 2400		
	their 2190 × 150 or 302 400 or 360 000	M1dep			
	324 000 or 327 600 or 328 500 or 329 400 or 333 000	A1			

Question	Answer	Mark	Commei	nts
27(c)	Ticks 'Her prediction could be too low or too high' and explains that fewer landings in winter would make it too low, but fewer landings at night would make it too high or states that the actual numbers are not given	B2	oe reason B1 ticks 'Her prediction coul too high'	d be too low or
	Ado	ditional G	Guidance	
	Ticks 'Her prediction could be too low is not enough data	or too hi	gh' and states that there	B1 only

Question	Answer	Mark	Comments
	Alternative method 1		
	(5 – 2) × 180 or 3 × 180 or 540 or 180 – (360 ÷ 5) or (180 – 72) or 108	M1	oe
	Ticks 'No' and 540 or Ticks 'No' and 108	A1	
	Alternative method 2		
28	States that a pentagon cannot have five (or all) right angles or states that a pentagon can have five (or all) obtuse angles or states that the maximum number of right angles is three or draws a pentagon with exactly three right angles shown	M1	
	Ticks 'No' and states that a pentagon cannot have five (or all) right angles or states that the maximum number of right angles is three or states that a pentagon can have five (or all) obtuse angles and draws a correct diagram of an attempted pentagon with four right angles shown or draws a pentagon with exactly three right angles shown or draws a pentagon with five obtuse angles	A1	

The Additional Guidance for question 28 is on the next page

Question	Answer	Mark	Comments	
	Ado	ditional G	uidance	
28	If comparing 72° to 90°, they must statest exterior angles			
cont	If 'Yes' is ticked, M1 can still be score			
	If neither box is ticked, 'No' must be implied by the explanation for M1A1			

	Alternative method 1					
29	$(6^2 =) 36 \text{ or } (8^2 =) 64$ or 100 or $\sqrt{100}$	M1				
	10	A1				
	their $10 = 5a$ or (their 10) ³ = $125a^3$ or $1000 = 125a^3$ or $8 = a^3$	M1				
	2	A1ft	ft their 10 with both meth	nod marks scored		
	Alternative method 2					
	5 or <i>a</i>	M1				
	5 <i>a</i>	A1				
	their $5a = \sqrt{100}$ or their $5a = 10$	M1	$(a =) \frac{\sqrt{100}}{5}$ or $(a =) \frac{10}{5}$ implies M1A1M1			
	2	A1ft	ft their 5a with both method marks scored			
	Additional Guidance					
	Use the scheme that gives the better mark					
	eg1 $\sqrt{14^2} = 5a$, 14 = 5a, a = 2.8 scores M0A0M1A0 on alt 1 and M1A1M0A0 on alt 2			Award M1A1M0A0		
	eg2 $\sqrt{100} = 5a^3$, $10 = 5a^3$, $a = \sqrt[3]{2}$ scores M1A1M0A0 on alt 1 and M1A0M1A1ft on alt 2					

Question	Answer	Mark	Comments		
30	Alternative method 1				
	280 – 80 or 200	M1			
	their 200 ÷ 80 (× 100) or 2.5 (× 100)	M1dep	oe		
	250	A1			
	Alternative method 2				
	280÷80 or 3.5	M1	oe		
	280 ÷ 80 × 100 (- 100) or their 3.5 × 100 (- 100) or 350 (- 100) or (their 3.5 - 1) (× 100) or 2.5 (× 100)	M1dep	oe		
	250	A1			

Question	Answer	Mark	Commer	nts			
	Alternative method 1						
	(x+a)(x+b)	M1	where $ab = \pm 12$ or $a + b = -1$				
	(x - 4)(x + 3)	A1					
	4 and –3	A1	SC1 4 or –3 with no or one inc	correct answer			
	Alternative method 2						
31	$\frac{()1 \pm \sqrt{((-)1)^2 - 4(1)(-12)}}{2(1)}$ or $\frac{1 \pm \sqrt{1 + 48}}{2}$ or $\frac{1 \pm \sqrt{49}}{2}$	M1	oe allow one sign error				
	$\frac{()1 \pm \sqrt{((-)1)^2 - 4(1)(-12)}}{2(1)}$ or $\frac{1 \pm \sqrt{1 + 48}}{2}$ or $\frac{1 \pm \sqrt{49}}{2}$	A1	oe fully correct				
	4 and –3	A1	SC1 4 or –3 with no or one incorrect answer				
	Alternative method 3						
	$\left(x-\frac{1}{2}\right)^2 \dots$	M1					
	$\left(x-\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 - 12 \ (=0)$	A1	oe equation				
	4 and -3	A1	SC1 4 or –3 with no or one incorrect answer				
	Additional Guidance						
	4 and –3 with no working			M1A1A1			
	M1 can be scored amongst incorrect attempts to factorise						
	Condone trailing bracket missing eg $(x - 4)(x + 3)$			M1A1			