# GCSE <br> Mathematics 

## Paper 1 Higher Tier

Mark scheme

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

## Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep $\quad$ A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) $\quad$ Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

## Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

## Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

## Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

## Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

## Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

## Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

## Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

## Work not replaced

Erased or crossed out work that is still legible should be marked.

## Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

## Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

## Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |



| 5(b) | $\begin{aligned} & 7 x-2 x>1-6 \text { or } 5 x>-5 \text { or } \\ & 6-1>2 x-7 x \text { or } 5>-5 x \\ & \text { or } 1>-x \end{aligned}$ | M1 | oe collecting terms |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x>-1$ or $-1<x$ | A1 | SC1 incorrect sign eg $x \geqslant-1$ or $x=-1$ or answer of -1 |  |
|  | Additional Guidance |  |  |  |
|  | Answer $x>\frac{-5}{5}$ |  |  | M1A0 |
|  | Answer only $\frac{-5}{5}$ |  |  | SC0 |
|  | $x>-1$ with -1 or $0,1,2 \ldots$ as |  |  | M1A0 |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |



| 7 | $\pi \times 6 \times 6$ <br> or $36 \pi$ or [113, 113.112] <br> or $9 \times[3.14,3.142]$ or [28.26, 28.3] | M1 | oe accept [3.14, 3.142] for |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $9 \pi$ or $9 \times \pi$ or $\pi 9$ or $\pi \times 9$ | A1 |  |  |
|  | Additional Guidance |  |  |  |
|  | $36 \pi$ followed by an incorrect method eg $36 \pi \div 2=18 \pi$ with answer $18 \pi$ |  |  | M1A0 |
|  | Answer of $9 \pi$ from $\pi \times 3^{2}$ |  |  | MOAO |
|  | $9 \pi$ and [28.26,28.3] given on answer |  |  | M1A0 |
|  | $\pi r^{2}$ stated but followed by 36 or 9 |  |  | MOAO |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |



| $\mathbf{9}$ | $n-1$ | B 1 |  |
| :--- | :--- | :--- | :--- |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 10(a) | $\frac{1}{2}(b+2 b) h \text { or } 3 \times \frac{1}{2} b h$ | M1 | oe |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $1.5 b h$ or $\frac{3}{2} b h$ or $\frac{3 b h}{2}$ or $1 \frac{1}{2} b h$ | A1 | accept $h b$ for $b h$ |  |
|  | Additional Guidance |  |  |  |
|  | Correct expression with $\times, \div$ or brackets |  |  | M1A0 |
|  | Condone units within expressions for M1 only |  |  |  |
|  | Condone the expression given within a formula eg $A=1.5 h b$ |  |  | M1A1 |
|  | Condone correct expression stated and then equated to a value or with values substituted |  |  | M1A1 |


| 10(b) | $3 b+2 s$ <br> or $3 b=2 s$ <br> or 4 s | M1 | oe |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $6 b$ | A1 | oe eg $b+b+b+b+b+b$ |  |
|  | Additional Guidance |  |  |  |
|  | Condone the expression given within a formula eg $P=6 b$ |  |  | M1A1 |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

## Alternative method 1

| $x+2 x+2 x+10$ or $5 x+10$ <br> or $x+2 x+2 x+10+90$ <br> or $5 x+100$ | M1 | oe |
| :--- | :--- | :--- |
| $x+2 x+2 x+10=360-90$ <br> or $5 x+10=270$ <br> or $x+2 x+2 x+10+90=360$ <br> or $5 x+100=360$ <br> or $5 x=260$ | M1dep | oe |
| $(x=) 52$ or $2 x=104$ <br> or $2 x+10=114$ | A1 | May be on diagram |
| $\frac{114}{360}$ or $\frac{57}{180}$ or $\frac{38}{120}$ or $\frac{19}{60}$ |  |  |
| or $0.31(6 .$.$) or 0.317$ or 0.32 |  |  |
| or $31(.6 \ldots) \%$ or $31.7 \%$ or $32 \%$ |  |  |$\quad$ B1ft $~ f t \frac{2 \times \text { their } 52+10}{360}$| or their angle for C |
| :--- |
| 360 |

11 Alternative method 2

| $\frac{90}{360}+\frac{x}{360}+\frac{2 x}{360}+\mathrm{P}(\mathrm{C})=1$ | oe |  |
| :--- | :--- | :--- |
| or $\frac{90}{360}+\frac{x}{360}+\frac{2 x}{360}+\frac{2 x+10}{360}$ | M1 |  |
| or |  |  |
| $\frac{2 x+10}{5 x+100}$ | A1 | May be on diagram |
| $\frac{90}{360}+\frac{x}{360}+\frac{2 x}{360}+\frac{2 x+10}{360}=1$ | M1dep | oe |
| $(x=) 52$ or $2 x=104$ <br> or $2 x+10=114$ | B1ft | ft $\frac{2 \times \text { their } 52+10}{360}$ |
| $\frac{114}{360}$ or $\frac{57}{180}$ or $\frac{38}{120}$ or $\frac{19}{60}$ |  |  |
| or $0.31(6 .$.$) or 0.317$ or 0.32 |  |  |
| or $31(.6 \ldots) \%$ or $31.7 \%$ or $32 \%$ |  |  |$\quad$ or $\frac{360 \text { for } \mathrm{C}}{360}$|  |
| :--- |


| 11 <br> cont | Additional Guidance |  |
| :---: | :--- | :---: |
|  | $\frac{360-10-90}{5}$ oe | M1M1A1B1 |
|  | $x+2 x+2 x+10$ followed by $6 x+10=270$ | M1M1 |
|  | Do not accept decimal within fraction for final answer if correct fraction <br> not seen | M1M0 |
|  | The follow through is not available if A1 awarded |  |


| 12 | Any two of 0.5, 40 and 100 | M1 | 1600 implies 40 <br> 10 implies 100 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\left(40^{2}=\right) 1600$ <br> or $\left(0.5 \times 40^{2}=\right) 800$ <br> or $(\sqrt{100}=) 10$ | M1 |  |  |
|  | 80 with correct working | A1 |  |  |
|  | Additional Guidance |  |  |  |
|  | $\frac{0.5 \times 1600}{\sqrt{100}}$ or $\frac{0.5 \times 40^{2}}{10}$ or |  | $\text { or } \frac{800}{10}$ | M1M1 |
|  | 80 with no or incorrect workin then rounding to 80 |  | ual calculation and | MOMOAO |
|  | Condone 0.50(0) for 0.5, 40. | and | O(0) for 100 etc |  |
|  | Rounding 0.526 to 1, but oth | ect, | answer 160 | M1M1A0 |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

## Alternative method 1

| $88 \div(7+4)$ or $88 \div 11$ or 8 | M1 | oe $11 \times 8=88$ |
| :--- | :--- | :--- |
| their $8 \times 7$ and their $8 \times 4$ <br> or their $8 \times 7$ and $88-$ their value <br> or their $8 \times 4$ and $88-$ their value <br> or 56 and 32 <br> or their $8 \times(7-4)$ <br> or their $8 \times 3$ | M1dep | oe |
| 24 | eg $8 \times 7=63$ and $88-63=30$ and $88-30$ |  |

## Alternative method 2

13

| One correctly evaluated trial for two <br> numbers, other than 7 and 4, in the <br> ratio $7: 4$ | M1 | eg $70+40=110$ |
| :--- | :---: | :--- |
| 56 and 32 | M1dep | eg $56+32=88$ |
| 24 | A1 |  |

Alternative method 3 using $x: y=7: 4$ (correct)

| $4 x=7 y$ <br> and <br> $4 x+4 y=352$ | $4 x=7 y$ <br> and <br> $7 x+7 y=616$ | M1 | oe <br> forming equation from ratio and equating <br> coefficients |
| :--- | :--- | :--- | :--- |
| $11 y=352$ <br> or $y=32$ | $11 x=616$ <br> or $x=56$ | M1dep | oe <br> equation in one variable |
| 24 | A1 |  |  |

Alternative method 4 using $x: y=4: 7$ (incorrect)

| $7 x=4 y$ <br> and <br> $4 x+4 y=352$ | $7 x=4 y$ <br> and <br> $7 x+7 y=616$ | M1 | oe <br> forming equation from ratio and equating <br> coefficients |
| :--- | :--- | :--- | :--- |
| $11 x=352$ <br> or $x=32$ | $11 y=616$ <br> or $y=56$ | M1dep | oe <br> equation in one variable |
| their answer |  | A0 |  |



| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 14 | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | $60 \div 2$ or 30 | M1 | exterior angle may be on diagram |
|  | $360 \div$ their 30 | M1dep |  |
|  | 12 | A1 |  |
|  | Alternative method 2 |  |  |
|  | $\frac{360-60}{2}$ or $\frac{300}{2}$ or 150 | M1 | interior angle may be on diagram |
|  | $\begin{aligned} & 360 \div(180-\text { their } 150) \\ & \text { or } 360 \div 30 \end{aligned}$ | M1dep |  |
|  | 12 | A1 |  |
|  | Alternative method 3 |  |  |
|  | $\frac{360-60}{2}$ or $\frac{300}{2}$ or 150 | M1 | interior angle may be on diagram |
|  | $180 \times(n-2)=\text { their } 150 \times n$ <br> or $180 n$ - their $150 n=360$ <br> or $30 n=360$ | M1dep | oe equation |
|  | 12 | A1 |  |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 15(a) | $7 \times 5 \times 3$ | M1 | oe $35 \times 3$ |
| :--- | :--- | :---: | :--- |
|  | 105 | A1 |  |
|  | Additional Guidance |  |  |
|  | 105 given with further work | M1A0 |  |


| 15(b) | Alternative method 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\frac{2}{7} \times \frac{3}{5} \text { or } \frac{2 \times 3}{7 \times 5}$ | M1 | oe |  |
|  | $\frac{6}{35}$ | A1 | oe |  |
|  | Alternative method 2 |  |  |  |
|  | $\frac{2 \times 3 \times 3}{\text { their } 105}$ | M1 | their 105 from (a) |  |
|  | $\frac{18}{\text { their } 105} \text { or } 35$ | A1ft | oe ft their 105 from (a) if $0<$ probability < 1 |  |
|  | Additional Guidance |  |  |  |
|  | Ignore incorrect simplification or conversion after a correct fraction |  |  | M1A1 |
|  | $\frac{2}{7} \times \frac{3}{5}$ or $\frac{6}{35}$ with further work other than simplification or conversion |  |  | M1A0 |
|  | $\frac{2}{7}+\frac{3}{5}$ |  |  | MOAO |
| 16 | 15 litres | B1 |  |  |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 17 | Ticks No and gives correct reason or <br> ticks No and gives numerical counter-example for any solid | B1 | $\begin{aligned} & \text { eg1 (volume of) } A \text { is } 8 \\ & \text { eg2 (volume) sf }=2^{3} \\ & \text { eg3 if } A \text { and } B \text { are cub } \\ & \text { volume of } A=27 \\ & \text { volume of } B=216 \\ & 216 \text { is not } 27 \times 2 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Additional Guidance |  |  |  |
|  | Condone $8 l^{3}$ <br> No, as the height/width is (also) doubled/different <br> No, as the length/volume is cubed <br> No, volume is $l^{3}$ <br> No, as the height could be different <br> No, it would be 3 times as big <br> Doubling the length doesn't double the volume |  |  | B1 B1 B0 B0 B0 B0 B0 |


| 18 | $-\frac{3}{2}$ and $\frac{2}{5}$ | B1 |  |
| :---: | :---: | :---: | :---: |


| 19 | $\begin{aligned} & a+65+115+c=360 \\ & \text { or } b+c=180 \end{aligned}$ | M1 | oe <br> oe |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & a+c=180 \\ & \text { and } b+c=180 \\ & \text { and } a=b \end{aligned}$ | A1 | oe | $y c=$ |
|  | angles at a point and (co)interior angles | A1 |  |  |
|  | Additional Guidance |  |  |  |
|  | Accept angles round a point for angles at a point |  |  |  |
|  | Accept allied angles for interior angles |  |  |  |



| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| Set of 3 points that give |
| :--- | :--- | :--- | :--- |
| area 28 |
| and $A$ on positive $y$-axis |
| and $B$ on negative $y$-axis |
| and $C$ on positive $x$-axis |$\quad$| eg1 $A(0,10) B(0,-4) C(4,0)$ |
| :--- |
| eg2 $A(0,18) B(0,-10) C(2,0)$ |
| B1 diagram labelled with numbers that |
| give area 28 |
| eg $A$ labelled 20, $B$ labelled -8, |
| $C$ labelled 2 |
| or calculation of form $\frac{b \times h}{2}$ seen that |
| equals 28 or $b \times h$ that equals $2 \times 28$ |
| eg $\frac{8 \times 7}{2}(=28)$ or $8 \times 7(=56)$ |


| 22(a) | (6) 225060 | B1 | cumulative frequency values may be implied by points plotted ( $\pm 0.5$ square) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Points plotted with upper class boundaries and cf values $( \pm 0.5 \text { square) }$ | B1ft | ft their cumulative frequencies must be increasing |  |
|  | Smooth curve or polygon ( $\pm 0.5$ square) | B1ft | ft their cumulative frequencies must be increasing and not a single straight line |  |
|  | Additional Guidance |  |  |  |
|  | Graphs may start from their first plotted point or from $(40,0)$ <br> If the points are plotted at mid-points, with a point at $(45,6)$, the graph may start at $(35,0)( \pm 0.5$ square $)$ <br> If the points are plotted at the lower bounds, with a point at $(40,6)$, the graph may start at $(0,0)$ |  |  |  |
|  | Graph starting at (0, 0), but otherwise correct |  |  | B1B1B0 |
|  | Graph plotted at mid-points or lower class boundaries, but otherwise correct |  |  | B1B0B1 |
|  | Graph ascends or descends after $x=80$ |  |  | B0 for $3^{\text {rd }}$ m |
|  | Bars drawn as well as correct graph |  |  | B1B1B0 |
|  | Bars drawn without correct graph |  |  | max B1 |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 22(b) | One correct mpg reading for their graph from cf of $15(.25)$ or $45(.75)$ or <br> horizontal lines from $15(.25)$ and 45(.75) only to their graph or $15(.25)$ and $45(.75)$ indicated as the cf values for the quartiles | M1 | $\pm 0.5$ square <br> ft their increasing graph <br> may be on table |
| :---: | :---: | :---: | :---: |
|  | Correct value for their increasing graph | A1ft |  |


| 23 | $(-3,5)$ | B1 |  |
| :--- | :--- | :--- | :--- |


| 24 | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | $180 \div(5+7)$ or $180 \div 12$ or 15 | M1 | oe |
|  | $5 \times$ their 15 <br> or $180-7 \times$ their 15 or 75 | M1dep | oe |
|  | $\begin{aligned} & 180-\text { their } 75-20 \\ & \text { or } 180-95 \end{aligned}$ | M1dep | oe |
|  | 85 | A1 |  |
|  | Alternative method 2 |  |  |
|  | $\begin{aligned} & x+\frac{7 x}{5}=180 \\ & \text { or } \frac{5 y}{7}+y=180 \text { or } y=105 \end{aligned}$ | M1 | oe correct elimination of a variable from equations $x+y=180$ and $7 x=5 y$ |
|  | $(x=) 180 \times \frac{5}{12} \text { or }(x=) 75$ | M1dep | oe |
|  | $\begin{aligned} & 180-\text { their } 75-20 \\ & \text { or } 180-95 \end{aligned}$ | M1dep | oe |
|  | 85 | A1 |  |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 25 | Alternative method 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $15 \times 8$ or 120 or $3 \times 6$ or 18 | M1 | oe total number of hours needed oe total number of hours worked by the 3 machines |  |
|  | $15 \times 8-3 \times 6$ or 102 | M1dep | oe total number of hours worked by the other 12 machines |  |
|  | 8.5 | A1 |  |  |
|  | Alternative method 2 |  |  |  |
|  | $3 \times(8-6)$ or $3 \times 2$ or 6 | M1 | oe total number of hours not worked by the three machines |  |
|  | their $6 \div 12$ or 0.5 | M1dep | oe that number divided by the other 12 machines |  |
|  | 8.5 | A1 |  |  |
|  | Alternative method 3 |  |  |  |
|  | $\begin{aligned} & 15 \times 8 \text { or } 120 \\ & \text { or } 15 \times 6 \text { or } 90 \end{aligned}$ | M1 | oe total number of hours needed oe total number of hours worked in the first 6 hours |  |
|  | $\frac{15 \times 8-15 \times 6}{12} \text { or } 2.5$ | M1dep | oe number of remaining hours divided by the other 12 machines |  |
|  | 8.5 | A1 |  |  |
|  | Additional Guidance |  |  |  |
|  | Note that $15 \div 6$ is not a correct method to get 2.5 (unless simplified from $30 \div 12$ ), so does not score |  |  |  |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 26(a) | $0.7 \div 10=0.07$ and $\frac{7}{9} \div 10=$ <br> $\frac{7}{90}$ <br> or $0.07 \times 10=0.7 \text { and } \frac{7}{90} \times 10=\frac{7}{9}$ <br> or $0.7 \div 10=0.07 \text { and } \frac{7}{90} \times 10=\frac{7}{9}$ <br> or <br> because the decimal is divided by 10 the 9 has to be multiplied by 10 | B1 | oe |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Additional Guidance |  |  |  |
|  | Algebraic methods |  |  | B0 |
|  | Division of 7 by 90 |  |  | B0 |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 26(b) | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | $0.2+0.07$ or $\frac{2}{10}+\frac{7}{90}$ | M1 |  |
|  | $\frac{18}{90}+\frac{7}{90}$ or $\frac{25}{90}$ | M1dep |  |
|  | $\frac{5}{18}$ | A1 |  |
|  | Alternative method 2 |  |  |
|  | $10 x=2.777 \ldots$ or $100 x=27.777 \ldots$ | M1 | Any letter |
|  | $10 x-x=2.777 \ldots-0.277 \ldots$ <br> or $9 x=2.5$ or $\frac{2.5}{9}$ <br> or $100 x-x=27.777 \ldots-0.277 \ldots$ <br> or $99 x=27.5$ or $\frac{27.5}{99}$ <br> or $100 x-10 x=27.777 \ldots-2.777 \ldots$ <br> or $90 x=25$ or $\frac{25}{90}$ | M1dep | oe |
|  | $\frac{5}{18}$ | A1 |  |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 27 | Alternative method 1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & (B, B) \frac{8}{11} \text { and } \frac{7}{10} \\ & \text { or }(R, R) \frac{3}{11} \text { and } \frac{2}{10} \end{aligned}$ | M1 | oe <br> may be seen on tree diagram |  |  |  |  |
|  | $\begin{aligned} & \text { (B, B) } \frac{8}{11} \times \frac{7}{10} \text { or } \frac{56}{110} \\ & \text { or }(R, R) \frac{3}{11} \times \frac{2}{10} \text { or } \frac{6}{110} \end{aligned}$ | M1dep | oe <br> may be seen on tree diagram |  |  |  |  |
|  | $\frac{8}{11} \times \frac{7}{10}+\frac{3}{11} \times \frac{2}{10}$ | M1dep | $\frac{56}{110}+\frac{6}{110}$ |  |  |  |  |
|  | $\frac{62}{110}$ or $\frac{31}{55}$ | A1 | {oe fraction accept $0.56(\ldots)$ or $56 .(. .) \$.} \hline & \multicolumn{4}{\|l|}{Alternative method 2} \hline & $\begin{aligned} & (B, R) \frac{8}{11} \text { and } \frac{3}{10} \\ & \text { or }(R, B) \frac{3}{11} \text { and } \frac{8}{10} \end{aligned}$ & M1 & \multicolumn{2}{\|l|}{oe may be seen on tree diagram} \hline & $\begin{aligned} & \text { (B, R) } \frac{8}{11} \times \frac{3}{10} \\ & \text { or }(R, B) \frac{3}{11} \times \frac{8}{10} \text { or } \frac{24}{110} \end{aligned}$ & M1dep & \multicolumn{2}{\|l|}{oe may be seen on tree diagram} \hline & 1- $\frac{8}{11} \times \frac{3}{10}-\frac{3}{11} \times \frac{8}{10}$ |  | M1dep | $1-\frac{24}{110}-\frac{24}{110}$ |  |
|  | $\frac{62}{110}$ or $\frac{31}{55}$ | A1 | oe fraction <br> accept 0.56(...) or 56.(...)\% |  |  |  |  |
|  | Additional Guidance |  |  |  |  |  |  |
|  | Ignore incorrect simplification or conversion after a correct fraction |  |  | M3A1 |  |  |  |
|  | $\frac{6820}{12100}$ |  |  | M3A1 |  |  |  |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 28(a) | $\left(0^{2}+\right) 6^{2}=36$ <br> or $(O A=)$ radius $=6$ <br> or $\sqrt{36}=6$ | B1 | oe |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Additional Guidance |  |  |  |
|  | $0+36=36$ |  |  | B0 |


| 28(b) | $(6,0)$ | B1 |  |
| :--- | :--- | :--- | :--- |


| 28(c) | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \frac{6-\text { their } 0}{0-\text { their } 6} \text { or } \frac{\text { their } 0-6}{\text { their } 6-0} \\ & \text { or } \frac{6}{-6} \text { or } \frac{-6}{6} \text { or }-1 \end{aligned}$ | M1 | gradient $A B$ |
|  | gradient $O M \times$ gradient $A B=-1$ and gradient $O M=1$ (and $y=x$ ) | A1 | must see correct working for M1 |
|  | Alternative method 2 |  |  |
|  | $\left(\frac{6+0}{2}, \frac{0+6}{2}\right)$ or (3,3) | M1 | coordinates of $M$ |
|  | gradient $O M=1 \quad($ and $y=x)$ <br> or $(0,0)$ and $(3,3)$ (and $y=x)$ | A1 | must see correct working for M1 |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| $\mathbf{2 8 ( d )}$ | $x^{2}+x^{2}=36$ or $2 x^{2}=36$ <br> or $y^{2}+y^{2}=36$ or $2 y^{2}=36$ <br> or $(-) 6 \cos 45^{\circ}$ or $(-) 6 \sin 45^{\circ}$ | M1 | oe equation |
| :--- | :--- | :--- | :--- |
|  | $(-) \sqrt{\frac{36}{2}}$ or $(-) \sqrt{18}$ or $(-) 3 \sqrt{2}$ <br> or $\left(-\frac{6 \sqrt{2}}{2}\right.$ or $(-) \frac{6}{\sqrt{2}}$ | M1 |  |
|  | $(-\sqrt{18},-\sqrt{18})$ or $(-3 \sqrt{2},-3 \sqrt{2})$ <br> or $\left(-\frac{6 \sqrt{2}}{2},-\frac{6 \sqrt{2}}{2}\right)$ <br> or $\left(-\frac{6}{\sqrt{2}},-\frac{6}{\sqrt{2}}\right)$ | A1 |  |


| 29(a) | $(180,0)$ | B1 |  |
| :--- | :--- | :---: | :---: |
|  | Additional Guidance |  |  |
|  | Condone degrees symbol on 180 | B1 |  |
|  | Condone $(\pi, 0)$ |  |  |


| 29(b) | $(-270,1)$ | B1 |  |
| :--- | :--- | :---: | :---: |
|  | Additional Guidance |  |  |
|  | Condone degrees symbol on 270 | B1 |  |
|  | Condone $\left(\frac{-3 \pi}{2}, 1\right)$ | 2 |  |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 30(a) | $\frac{1}{81^{\frac{1}{4}}}$ or $\frac{1}{\sqrt[4]{81}}$ or $\sqrt[4]{\frac{1}{81}}$ <br> or $3^{-1}$ or $9^{-\frac{1}{2}}$ <br> or $81^{\frac{1}{4}}=3$ or $\sqrt[4]{81}=3$ or $3^{4}=81$ | M1 |  |
| :---: | :---: | :---: | :---: |
|  | $\frac{1}{3}$ | A1 |  |
|  | Additional Guidance |  |  |
|  | 3 without $81^{\frac{1}{4}}$ or $\sqrt[4]{81}$ |  | MOAO |


| 30(b) | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & (16=) 2^{4} \\ & \text { or }\left(2^{3}\right)^{2 x} \text { or } 2^{6 x} \end{aligned}$ | M1 | oe with consistent base 2 |
|  | $(16=) 2^{4}$ and $\left(2^{3}\right)^{2 x}$ or $2^{6 x}$ | M1dep |  |
|  | $2^{4+6 x}$ or $2^{2(2+3 x)}$ | A1 |  |
|  | Alternative method 2 |  |  |
|  | $\left.)^{2} \quad 2 \quad 3 x\right)^{2}$ | M1 |  |
|  | $\left(2^{2+3 x}\right)^{2}$ | M1dep |  |
|  | $2^{4+6 x}$ or $2^{2(2+3 x)}$ | A1 | oe index |

