GCSE
Mathematics
8300/2 - Paper 2 Higher Tier
Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
Sc	A mecial case. Marks awarded for a common misinterpretation mark dependent on a previous method mark being awarded.
M dep	A mark that can only be awarded if a previous independent mark has been awarded.
B dep	Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
(a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a salue < b

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

$\mathbf{1}$	segment	B1		
	Additional Guidance			

| 2 | 6×10^{7} | B1 | |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

| 3 | $3: 2$ | B1 | |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

4	400%	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

6	Alternative method 1		
	Any one of or .(...) $\%$ or $\frac{1}{7}$ or $\div \quad \text { or }$ or .(...)\% or $\frac{8}{7}$ or $420000 \div 60000 \text { or } 7$ or $420000 \div 480000 \text { or } 0.875$ or 87.5% or $\frac{7}{8}$ or $.(\ldots) \% \text { or } \frac{1}{9}$ or $540000 \div 60000 \text { or } 9$	M1	$\begin{aligned} & \text { oe } \\ & \text { eg } 60000: 420000 \text { or } 1: 7 \\ & \text { or } \\ & 480000: 420000 \text { or } 8: 7 \end{aligned}$
	Any one of $60000 \div 480000 \text { or } 0.125$ or 12.5% or $\frac{1}{8}$ or $540000 \div 480000$ or 1.125 or 112.5% or $\frac{9}{8}$ or $480000 \div 60000$ or 8 or $\div \quad \text { or } . \quad \ldots$ or 0.89 or.$(\ldots) \%$ or $\%$ or $\frac{8}{9}$	M1	must be a matching pair (could be different forms) to award M2 (see A1 for list of matching pairs) oe eg $60000: 480000$ or $1: 8$ or 540000 : 480000 or $9: 8$

Mark scheme continues on the next page

Question	Answer	Mark	Comments
$\begin{gathered} 6 \\ \text { cont } \end{gathered}$	$\frac{1}{7}$ and $\frac{1}{8}$ and No or $\frac{8}{7}$ and $\frac{9}{8}$ and No or ... and . and No or .(...)\% and . $\%$ and No or and . and No or (...)\% and 12.5% and No or 7 and 8 and No or $\frac{7}{8}$ and $\frac{8}{9}$ and No or $\frac{1}{9}$ and $\frac{1}{8}$ and No or 9 and 8 and No or and . and No or .(...)\% and . \% and No or . and or . and No or . \% and .(...)\% or \% and No	A1	oe eg 1:7 and 1:8 and No

Question	Answer	Mark	Comments

$\begin{gathered} 6 \\ \text { cont } \end{gathered}$	Alternative method 2		
	No and any one of $\begin{aligned} & \frac{60000}{420000} \times 480000 \text { and } \\ & {[67200,68640]} \\ & \text { or } \\ & \frac{60000}{480000} \times 540000 \text { and } 67500 \end{aligned}$ or $\frac{60000}{480000} \times 420000 \text { and } 52500$ or $\frac{60000}{540000} \times 480000 \text { and }$ $\text { [52 800, } 53334]$ or $\frac{420000}{480000} \times 540000 \text { and } 472500$ or $\frac{480000}{420000} \times 480000 \text { and }$ [547 200, 548 640] or $\frac{480000}{540000} \times 480000 \text { and }$ [422 400, 427 200] or $\frac{540000}{480000} \times 420000 \text { and } 472500$	B3	oe B2 any one of the calculations B1 any one of the fractions oe for equivalent fractions, decimals and percentages see Alternative method 1

Additional guidance continues on the next page

Question	Answer	Mark	Comments

7(a)	Two different probabilities from $\begin{aligned} & \frac{15}{20} \text { or } 0.75 \text { or } 75 \% \\ & \text { or } \\ & \frac{22}{30} \text { or } . \ldots \text { or } .(\ldots) \% \\ & \text { or } \\ & \frac{17}{40} \text { or } 0.425 \text { or } 0.43 \end{aligned}$ or 42.5% or 43% or $\frac{54}{90} \text { or } 0.6 \text { or } 60 \%$ or $\frac{37}{50}$ or 0.74 or 74% or $\frac{32}{60} \text { or or .(...)\% }$ or $\frac{39}{70} \text { or . } \ldots \text { or } 0.56$ or \% or \%	B2	oe B1 for one correct probability

Additional guidance continues on the next page

Question	Answer	Mark	Comments

7(b)	Alternative method 1 (ft their part (a))			
	Their probability with the greater number of trials and valid reason eg More throws	B1ft	ft their two different probabilities from part (a) both probabilities must have a denominator based on throws	
	Alternative method 2 (independent of part (a))			
	$\begin{aligned} & \frac{54}{90} \\ & \text { and } \\ & \text { valid reason eg Total throws } \end{aligned}$	B1	oe	
	Additional Guidance			
	Accept any unambiguous indication of their probability eg the day			
	Using ratios			B0
	Ignore any non-contradictory statements			
	60\% and It's for all three days			B1
	$\frac{54}{90}$ and It takes into account more throws			B1
	$\frac{17}{40}$ (with $\frac{22}{30}$ also in (a)) and Because he threw it more on Wednesday			B1ft
	$\frac{54}{90}$ and Shows the overall probability			B1
	$\frac{54}{90}$ and Probability over total throws			B1
	$\frac{54}{90}$ (with Wednesday probability in (a)) and It's the average total days, not just Wednesdays			B1ft

Additional guidance continues on the next page

Question	Answer	Mark	Comments

7(b) cont	Correct ft probability or $\frac{54}{90}$ and It's more reliable	BO
	$\frac{54}{90}$ and There's a lot of data	BO
	$\frac{54}{90}$ and He throws 90 times	BO
	Correct ft probability or $\frac{54}{90}$ and More hits	BO

8	Alternative method 1		
	22.5(0) and 4 or 27 and 8 or 31.5(0) and 12 or 36 and 16 or 40.5(0) and 20 or 45 and 24 or $30: 16$ or $45: 24$	M1	
	45 and 24 chosen	A1	eg $45: 24$ is the final ratio seen
	6	A1	

Mark scheme and additional guidance continues on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 8 \\ \text { cont } \end{gathered}$	Alternative method 2		
	$18+4.5 x$ and $4 x$ seen or $\frac{18+4.5 x}{15}=\frac{4 x}{8}$	any letter oe sets up correct equation	
	$8(18+4.5 x)=60 x$ or $144+36 x=60 x$ or $24 x=144$	eliminates denominators oe	
	6		
	Additional Guidance		
	Answer 6 that is not from incorrect method		M1A1A1
	45 and 24 followed by eg 49.5(0) and 28 (answer not 6)		M1A0A0
	Equivalent ratio to $15: 8$ that is not $30: 16$ or $45: 24$ eg $60: 32$ (answer not 6)		MOAOAO
	Final calculation $\frac{15}{8} \times 24=45 \quad($ answer not 6$)$		M1A1A0

Question	Answer	Mark	Comments

9(b)	41.75 and 42.25	B1ft	correct or ft their two different values from (a) their 8.35 must be in the range $(8.3,8.4]$ their 8.45 must be in the range $(8.4,8.5]$ correct order or ft order accept 42.249 for 42.25	
	Additional Guidance			
	($8.3,8.4$] does not include 8.3 but does include 8.4 ($8.4,8.5$] does not include 8.4 but does include 8.5			
	Answer of 8.35 and 8.44 in part (a) leading to 41.75 and 42.2			B1ft
	Answer of 8 and 9 in part (a) leading to 40 and 45			BOft

Question	Answer	Mark	Comments

10	Alternative method 1		
	$\begin{aligned} & \frac{4}{3} \pi \times 30^{3} \text { or } 36000 \pi \\ & \text { or [112 } 757,113112] \\ & \text { or } \\ & \frac{1}{2} \times \frac{4}{3} \pi \times 30^{3} \text { or } 18000 \pi \\ & \text { or [55 954, } 56839] \end{aligned}$	M1	$\begin{aligned} & \text { oe } \\ & \text { allow for } \frac{4}{3} \\ & \text { allow or . for } \frac{2}{3} \end{aligned}$
	```their [112 757, 113 112] % 4000 or 9\pi or .(...) or their [55 954, 56 839] % 4000 or }\frac{9\pi}{2}\mathrm{ or [13.9, 14.21] or their [112 757, 113 112] % (4000 × 60) or }\frac{3\pi}{20}\mathrm{ or [0.46, 0.4713] or their [55 954, 56 839] % (4000 * 60) or }\frac{3\pi}{40}\mathrm{ or . .. or 0.24```	M1dep	
	[13.9, 14.21] and Yes or ... or . and Yes	A1	

Mark scheme and additional guidance continues on the next page

Question	Answer	Mark	Comments


$\begin{gathered} 10 \\ \text { cont } \end{gathered}$	Alternative method 2		
	$\begin{aligned} & \frac{4}{3} \pi \times 30^{3} \text { or } 36000 \pi \\ & \text { or [112 } 757,113112] \\ & \text { or } \\ & \frac{1}{2} \times \frac{4}{3} \pi \times 30^{3} \text { or } 18000 \pi \\ & \text { or [55 954, } 56839] \end{aligned}$	M1	oe   allow . ... for $\frac{4}{3}$ allow . ... or . for $\frac{2}{3}$
	$4000 \times 15$ or 60000	M1	
	[55 954, 56839 ] and 60000 and Yes	A1	
	Alternative method 3		
	$\begin{aligned} & \frac{4}{3} \pi \times 30^{3} \text { or } 36000 \pi \\ & \text { or [112 } 757,113112] \\ & \text { or } \\ & \frac{1}{2} \times \frac{4}{3} \pi \times 30^{3} \text { or } 18000 \pi \\ & \text { or [55 954, } 56839] \end{aligned}$	M1	oe allow . ... for $\frac{4}{3}$ allow . ... or . for $\frac{2}{3}$
	$\begin{aligned} & \text { their }[112757,113112] \div 15 \\ & \text { or } 2400 \pi \text { or }[7517,7541] \\ & \text { or } \\ & \text { their }[55954,56839] \div 15 \\ & \text { or } 1200 \pi \text { or }[3730,3790] \end{aligned}$	M1dep	
	[3730, 3790] and Yes	A1	
	Additional guidance		
	Do not award A1 if incorrect conversion of $\frac{1}{4}$ hour seen		


Question	Answer	Mark	Comments


11(a)	$\begin{aligned} & \frac{1}{3} \text { or } \frac{2}{6} \text { or . .. or } .(\ldots) \% \text { on } \\ & \text { each top branch } \\ & \text { and } \\ & \frac{2}{3} \text { or } \frac{4}{6} \text { or . ... or . or } \\ & .(\ldots) \% \text { or } \% \text { on each bottom } \\ & \text { branch } \end{aligned}$	B1	accept any equivalent or percentage	decimal
	Additional Guidance			
	Decimals must have at least 2 decimal places so do not accept 0.3 or 0.6 or 0.7			
	Only accept the percentages shown, do not accept 30\% or 60\%			
	Ignore working around the edge of the diagram			
			Less than 3   3 or more   Less than 3   3 or more	B1



11(c)	Alternative method 1 Probabilities on branches in (a) all correct		
	$\frac{1}{3} \times \frac{2}{3}$ or $\frac{2}{3} \times \frac{1}{3}$ or $\frac{2}{9}$	M1	oe   accept . ... for $\frac{1}{3}$   accept . ... or . for $\frac{2}{3}$
	$\frac{4}{9} \text { or . ... or .(...)\% }$	A1	
	Alternative method 2 Probabilities on branches in (a) all correct		
	$1-\left(\frac{1}{3} \times \frac{1}{3}\right)-\left(\frac{2}{3} \times \frac{2}{3}\right)$	M1	$\begin{aligned} & \text { oe } \\ & \text { accept . ... for } \frac{1}{3} \\ & \text { accept . ... or . for } \frac{2}{3} \end{aligned}$
	$\frac{4}{9}$ or . ... or .(...)\%	A1	

Mark scheme continues on the next page

Question	Answer	Mark	Comments


11(c)   cont	Alternative method 3 Probabilities on branches in (a) not all correct		
	$\frac{1}{3} \times \text { their } \frac{2}{3}$   where their $\frac{2}{3}$ must be for 2nd dice 3 or more   or their $\frac{2}{3} \times$ their $\frac{1}{3}$ where their $\frac{2}{3}$ must be for 1 st dice 3 or more and their $\frac{1}{3}$ must be for 2nd dice less than 3	M1	oe   accept . ... for $\frac{1}{3}$   accept . ... or . for $\frac{2}{3}$   their fractions must be between 0 and 1
	$\frac{4}{9} \text { or . ... or .(...)\% }$	A1ft	ft their fractions
	Alternative method 4 Probabilitie	bran	es in (a) not all correct
	$1-\left(\frac{1}{3} \times \frac{1}{3}\right)-\left(\text { their } \frac{2}{3} \times \text { their } \frac{2}{3}\right)$ where their $\frac{2}{3}$ must be for 1st dice 3 or more and their $\frac{2}{3}$ must be for 2nd dice 3 or more	M1	$\begin{aligned} & \text { accept . ... for } \frac{1}{3} \\ & \text { accept . ... or . for } \frac{2}{3} \end{aligned}$   their fractions must be between 0 and 1
	$\frac{4}{9} \text { or . ... or .(...)\% }$	A1ft	ft their fractions

Additional guidance continues on the next page

Question	Answer	Mark	Comments


$\begin{aligned} & \text { 11(c) } \\ & \text { cont } \end{aligned}$	Additional Guidance	
	If probabilities on branches in (a) are all $\frac{1}{3}$	MOAO
	Decimals must have at least 2 decimal places so do not accept 0.3 or 0.6 or 0.7	
	Ignore any incorrect cancelling or change of form (fraction, decimal or percentage)	
	$\frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3}$	MOAO
	$\frac{1}{3} \times \frac{2}{3}$ and $\frac{1}{3} \times \frac{1}{3}$ without selecting $\frac{1}{3} \times \frac{2}{3}$ is choice	M0


12(a)	$\frac{1}{2}$ or 0.5	B1	oe eg $\frac{4}{8}$ or	
	Additional Guidance			
	1:2 or 50\%			B0
	$\frac{1}{2} x$			B0
	$y=0.5 x+2$			B
	$\frac{0.5}{1}$			B0
	Ignore units			


Question	Answer	Mark	Comments



Question	Answer	Mark	Comments


13	Alternative method 1		
	Any correct factorisation of the numerator or the denominator	M1	eg $8\left(x^{2}-1\right)$ or $4(x+1)$   or $2\left(4 x^{2}-4\right)$ or $2(2 x+2)$ or $4\left(2 x^{2}-2\right)$   or $(4 x+4)(2 x-2)$ or $(4 x-4)(2 x+2)$   or $(8 x+8)(x-1)$ or $(8 x-8)(x+1)$   or $-2\left(-4 x^{2}+4\right)$   does not need to be seen in a fraction   may be implied eg $\frac{2 x^{2}-2}{x+1}$ or $\frac{4 x^{2}-4}{2 x+2}$
	Correct fraction with a common algebraic factor in the numerator and the denominator	A1	$\begin{aligned} & \text { eg } \frac{8(x+1)(x-1)}{4(x+1)} \text { or } \frac{2(2 x+2)(2 x-2)}{2(2 x+2)} \\ & \text { or } \frac{2(x+1)(x-1)}{(x+1)} \text { or } \frac{4(x+1)(2 x-2)}{4(x+1)} \\ & \text { or } \frac{(4 x+4)(2 x-2)}{4 x+4} \end{aligned}$
	$2 x-2$   or $a=2$ and $b=-2$   with M1A1 scored	A1	

Mark scheme and additional guidance continues on the next page

Question	Answer	Mark	Comments


$\begin{gathered} 13 \\ \text { cont } \end{gathered}$	Alternative method 2			
	$4 a x^{2}+4 a x+4 b x+4 b$	M1	oe expands $(a x+b)(4 x+4)$ to 4 terms with at least 3 terms correct	
	Any 2 of $4 a=8 \quad 4 b=-8 \quad 4 a+4 b=0$	A1		
	$a=2 \text { and } b=-2$   and   shows that third equation is satisfied   with M1A1 scored	A1		
	Additional Guidance			
	M1 is implied by the first A1 eg $\frac{8(x+1)(x-1)}{4(x+1)}$			M1A1
	$1\left(8 x^{2}-8\right)$ or $-1\left(8-8 x^{2}\right)$ etc			M0
	$2 x-2$ without M1A1 scored			MOAOAO
	M1A1 scored and $2 x-2$ followed by attempt to solve $2 x-2=0$			M1A1A1
	M1A1 scored and $2 x-2$ followed by $2(x-1)$			M1A1A1
	M1A1 scored followed by $2(x-1)$ but $2 x-2$ not seen			M1A1A0


Question	Answer	Mark	Comments



Question	Answer	Mark	Comments


| 15 | Men had more consistent scores <br> than women | B 1 |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Additional Guidance |  |  |
|  |  |  |  |


16(a)	$\begin{aligned} & 2400 \times 3.8 \\ & \text { or } \frac{m}{3.8}=2400 \text { or } \frac{m}{2400}=3.8 \end{aligned}$	M1	oe equation allow mass for $m$ allow any letter apart from $v$ or $d$
	9120	A1	
	Additional Guidance		


16(b)	$\begin{aligned} & \pi r^{2} h=3.8 \\ & \text { or } \\ & \pi \times 0.5^{2} \times h \text { or } 0.25 \pi h \\ & \text { or }[0.78,0.79] h \\ & \text { or } \\ & 3.8 \div\left(\pi \times 0.5^{2}\right) \text { or } 3.8 \div 0.25 \pi \\ & \text { or } 3.8 \div[0.78,0.79] \end{aligned}$	M1	$\text { oe eg } \pi r^{2}=\frac{3.8}{h}$	
	[4.8, 4.841]	A1		
	Additional Guidance			
	$\pi 0.5^{2} h$			M1


Question	Answer	Mark	Comments	
$17(\mathrm{a})$	$[2.9,3]$		B1	
	Additional Guidance			


| $\mathbf{1 7 ( b )}$ | $[1.4,1.6]$ | B1 |  |
| :--- | :--- | :---: | :---: | :---: |
|  | Additional Guidance |  |  |
|  |  |  |  |



18	5 and 6 with no incorrect evaluation seen for $3^{5}$ or $3^{6}$   or   5 and 6 with no incorrect evaluation seen for $\sqrt[5]{300}$ or $\sqrt[6]{300}$	B1	5 and 6 in either allow any evaluatio rounded to 2 sf or	
	Additional Guidance			
	5 and 6 with either $3^{5}$ or $3^{6}$ evaluated incorrectly			B0
	$3^{5}$ or $3^{6}$			B0
	243 and 729			B0
	$\begin{aligned} & 3^{5}=243 \quad \text { Allow } 240 \text { or } 200 \text { (with no incorrect value seen) } \\ & 3^{6}=729 \quad \text { Allow } 720 \text { or } 730 \text { or } 700 \text { (with no incorrect value seen) } \end{aligned}$			
	$\begin{aligned} & \sqrt[5]{300}=.(\ldots) \text { or } . \\ & \sqrt[6]{300}=.(\ldots) \text { or } 2.59 \text { or } 2.6 \end{aligned}$			


Question	Answer	Mark	Comments


19	Alternative method 1 Using one half of the isosceles triangle		
	(base angle =) 35   or (top angle =) 55	B1	may be on diagram
	$\cos (\text { their } 35)=\frac{6}{x}$   or $\sin (\text { their } 55)=\frac{6}{x}$   or $6^{2}+(6 \tan (\text { their } 35))^{2}$	M1	$\text { oe eg } \frac{\sin 90}{x}=\frac{\sin (\text { their } 55)}{6}$   any letter   their 35 must be acute   their 55 must be acute
	$\cos$ (their )   $\frac{6}{\sin (\text { their } 55)}$   or   $6^{2}+(6 \tan$ (their 35$\left.)\right)^{2}$   or $\cdot(\ldots)$	M1dep	oe
	[50.6, 50.65]	A1ft	ft BOM2 with evaluation of $+\times$ their . (...)

Mark scheme and additional guidance continues on the next page

Question	Answer	Mark	Comments


$\begin{gathered} 19 \\ \text { cont } \end{gathered}$	Alternative method 2 Using the isosceles triangle			
	(base angle =) 35   or (top angle =) 110	B1	may be on diagram	
	$\frac{x}{(\text { their } 35)}=\frac{12}{\sin \text { (their 110) }} \sin$   or   $12^{2}=x^{2}+x^{2}-2 \times x \times x \times \cos$ (their 110)   or $x^{2}=x^{2}+12^{2}-2 \times x \times 12 \times \cos$   (their 35)	M1	oe   any letter   their 35 must be acute   their 110 cannot be 125	
	$\begin{aligned} & \frac{12}{\sin (\text { their } 110)} \times \sin \text { (their } 35 \text { ) } \\ & \text { or } \\ & \sqrt{\frac{12^{2}}{2-2 \cos (\text { their } 110)}} \\ & \text { or } \\ & \frac{12^{2}}{2 \times 12 \times \cos \text { (their } 35)} \\ & \text { or } .(\ldots) \end{aligned}$	M1dep	oe	
	[50.6, 50.65]	A1ft	ft BOM2 with evaluation of $+\times$ their . ( ...)	
	Additional Guidance			
	Allow B1 even if the angle is not subsequently used			
	Alt 2 Top angle 90			MOMOAO
	Answer [50.6, 50.65] (possibly from scale drawing)			B1M1M1A1


Question	Answer	Mark	Comments



Question	Answer	Mark	Comments

## Alternative method 1

$80^{2}+60^{2}-2 \times 80 \times 60 \times \cos 75$   or $6400+3600-9600 \cos 75$   or $\quad(\ldots)$	M1	oe
their $7515 .(\ldots)$   or $[86.6,86.7] ~ o r ~ 87 ~$	M1dep	
$[86.6,86.7] ~ a n d ~ L i z ~$   or 87 and Liz	A1	accept 86 and Liz or 90 and Liz   with full method seen

## Alternative method 2

| $80^{2}+60^{2}-2 \times 80 \times 60 \times \cos 75$ <br> or $6400+3600-9600 \cos 75$ <br> or $\quad .(\ldots)$ | M1 | oe |
| :--- | :--- | :--- | :--- |
| $\left(80^{2}=\right) \quad$ and $\quad .(\ldots)$ and Liz | A2 |  |

21(a)

## Additional Guidance

$80^{2}+60^{2}-2 \times 80 \times 60 \times \cos 75$ seen followed by processing error can score up to M2
eg $80^{2}+60^{2}-2 \times 80 \times 60 \times \cos 75$
M1
$=6400+3600-9600 \cos 75$
$=400 \cos 75=103.5$
$\sqrt{103.5}$
M1depA0
You may need to check on your calculator whether to award M1dep after first M1 with a processing error seen
eg $80^{2}+60^{2}-2 \times 80 \times 60 \times \cos 75=3654$ (processing error)
60.4 (square root of 3654 is implied)

60.4 (square root of 3654 is implied)	M1depA0
Ignore any reasons given	
Alt 2 not possible to score M1A1	
Answer [86.6, 86.7] and Liz (possibly from scale drawing)	M1M1A1
$[86.6,86.7]$ (possibly from scale drawing)	M1M1


Question	Answer	Mark	Comments



| 22 | $x^{2}+y^{2}=25$ | B1 |  |
| :--- | :--- | :---: | :--- | :--- |
|  | Additional Guidance |  |  |
|  |  |  |  |


Question	Answer	Mark	Comments


23	$\sqrt[3]{64}$ and $\sqrt[3]{343}$   or   4 and 7   or   $\sqrt[3]{[5.3,5.4]}$ or [1.74, 1.754411]   or   $\sqrt[3]{[0.18,0.19]}$ or [0.56, 0.575]	M1	oe eg $4: 7$ or $7: 4$   or $\sqrt[3]{\frac{343}{64}}$ or $\frac{7}{4}$   or $\sqrt[3]{\frac{64}{343}}$ or $\frac{4}{7}$	
	their $4^{2}$ and their $7^{2}$   or   16 and 49   or   their $[1.74,1.754411]^{2}$   or [3.02, 3.08]   or   their $[0.56,0.575]^{2}$ or $[0.31,0.331]$	M1dep	$\begin{aligned} & \text { oe eg } 16: 49 \text { or } 49: 16 \\ & \text { or }\binom{\text { their }}{7}^{2} \text { or } \frac{49}{16} \\ & \text { or }\left(\begin{array}{ll} \text { their } & 4 \\ 7 \end{array}\right)^{2} \end{aligned} \text { or } \begin{aligned} & \frac{16}{49} \end{aligned}$	
	539	A1		
	Additional Guidance			
	$4^{3}$ and $7^{3}$			M1
	$64^{\frac{2}{3}} \text { and } 343^{\frac{2}{3}}$			M1M1
	$\left(\frac{343}{64}\right)^{\frac{2}{3}} \text { or }\left(\frac{64}{343}\right)^{\frac{2}{3}}$			M1M1
	Answer 539 with evidence of rounding to 539 scores A0   eg1 $176 \times 3.06=538.56$ Answer 539   eg2 $176 \times 3.06=539$ (may have kept all digits on calculator)			M1M1A0 M1M1A1
	$\left(\sqrt{176} \times \frac{7}{4}\right)^{2}$			M1M1
	$176 \div 16=11$ and $11 \times 49$			M1M1
	4 and 7 (and/or $4^{2}$ and $7^{2}$ ) but uses different method not involving 4 and 7			M1M0A0


Question	Answer	Mark	Comments


24	Alternative method 1		
	Any product of three valid dimensions that would give a volume < 34000   or   any product of three valid dimensions that would give a volume > 34000	M1	eg $49.5 \times 34.5 \times 19.5$   or $50.5 \times 35.5 \times 20.5$   or $50 \times 35 \times 20$   ignore any evaluations of products
	Any product of three valid dimensions that would give a volume < 34000   and   any product of three valid dimensions that would give a volume > 34000	M1dep	$\text { eg } 49.5 \times 34.5 \times 19.5$   and $50.5 \times 35.5 \times 20.5$   ignore any evaluations of products
	$34 \times 1000$ or 34000	M1	converts to $\mathrm{cm}^{3}$
	their volume < 34000   and   their volume > 34000   and   34000   and   ticks Cannot tell	A1	both volumes in $\mathrm{cm}^{3}$   must see working for M3   answers for their volumes must be seen and be correct or rounded or truncated to at least 2 sf (unless 34000 to 2 sf when must be to at least 3 sf )

Mark scheme continues on the next page


Additional guidance continues on the next page

Question	Answer	Mark	Comments


$\begin{gathered} 24 \\ \text { cont } \end{gathered}$	Additional Guidance	
	There are an infinite number of sets of three valid dimensions Valid dimensions   for 50 are [49.5, 50.5]   for 35 are [34.5, 35.5]   for 20 are [19.5, 20.5]	
	Three valid dimensions do not have to follow a pattern   eg . $\times \times$. (= . $\ldots$ ) or or or )	M1
	49.534 .519 .5 and 33301 (answer implies multiplication signs)	M1
	49.534 .519 .5 (no answer so multiplication signs not implied)	M0
	33301 but 49.534 .519 .5 not seen	M0
	Units do not have to be seen	


Question	Answer	Mark	Comments



Question	Answer	Mark	Comments


	Alternative method 1		
	$4 x^{2}+5 x+3=x+2$	M1	
	$\begin{aligned} & 4 x^{2}+5 x-x+3-2(=0) \\ & \text { or } 4 x^{2}+4 x+1(=0) \end{aligned}$	M1dep	oe collection of terms eg $4 x^{2}+5 x-x=2-3$ or $4 x^{2}+4 x=-1$
26	$\begin{aligned} & (2 x+1)(2 x+1)(=0) \\ & \text { or } 4\left(x+\frac{1}{2}\right)^{2}(=0) \end{aligned}$   or $\frac{-4 \pm{\sqrt{4^{2}}}^{2}-4 \times 4 \times 1}{2 \times 4}$   or $b^{2}-4 a c=4^{2}-4 \times 4 \times 1$   or $D$ (iscriminant) $=4^{2}-4 \times 4 \times 1$	A1	oe $\operatorname{eg}\left(x+\frac{1}{2}\right)^{2}(=0)$   allow $b^{2}-4 a c=16-16$ or   $D($ iscriminant $)=16-16$
	$(x=)-\frac{1}{2}$ with no other solutions with M2A1 seen   or   states that as brackets are the same there is only one solution with M2A1 seen   or $b^{2}-4 a c=4^{2}-4 \times 4 \times 1=0$   and states there is only one solution with M2A1 seen   or   $D$ (iscriminant) $=4^{2}-4 \times 4 \times 1=0$   and states there is only one solution with M2A1 seen	A1	oe   allow $b^{2}-4 a c=16-16=0$   and states there is only one solution with M2A1seen   allow $D$ (iscriminant) $=16-16=0$ and states there is only one solution with M2A1seen

## Mark scheme continues on the next page

Question	Answer	Mark	Comments



## Additional guidance continues on the next page

Question	Answer	Mark	Comments


$\begin{gathered} 26 \\ \text { cont } \end{gathered}$	Additional Guidance		
	Alt $1(x=)-\frac{1}{2}$ with no working or Alt $2(y=) \frac{3}{2}$ with no working	MOMOAOAO	
	Alt 1 Ignore any $y$-coordinate whether correct $\left(\begin{array}{c}3 \\ \left.=\frac{3}{2}\right)\end{array}\right.$ or incorrect		
	Alt 2 Ignore any $x$-coordinate whether correct $\left(=-\frac{1}{2}\right)$ or incorrect		
	$T \& \\|$ leading to $x=-\frac{1}{2}$	MOMOAOAO	
	To award M1dep you must see a correct expression with terms collected or a correct equation with terms collected		
	$\begin{aligned} & 4 x^{2}+5 x+3=x+2 \\ & \left.4 x^{2}+1=-4 x \quad \text { (all } x \text { terms not collected on one side }\right) \end{aligned}$	M1 MOdep	
	$\begin{aligned} & 4 x^{2}+5 x+3=x+2 \\ & 4 x^{2}+4 x+3=2 \text { (all constant terms not collected on one side) } \end{aligned}$	M1 MOdep	
	If using the discriminant to award A marks, you must see either $b^{2}-4 a c$ or D (iscriminant)   $b^{2}-4 a c=4^{2}-4 \times 4 \times 1$ can be implied   eg $b+\sqrt{b^{2}-4 a c}$ and $4+\sqrt{4^{2}-4 \times 4 \times 1}$ scores first A1   For final A1 must see $b^{2}-4 a c=4^{2}-4 \times 4 \times 1=0$ and statement that there is only one solution with M2A1 seen		


Question	Answer	Mark	Comments

Alternative method 1 Working with 2.75.....

$10 x=27.5 \ldots$   or $100 x=275$.	M1	oe multiplication by a power of 10 eg 1000x = . ...   any letter
$\begin{aligned} & 10 x-x=27.5 \ldots-\ldots \\ & \text { or } 9 x=24.8 \text { with } 10 x=27.5 \ldots \text { seen } \\ & \text { or } \\ & 100 x-10 x=275 \ldots-27.5 \ldots \\ & \text { or } 90 x=248 \text { with } 100 x=275.5 \ldots \\ & \text { and } 10 x=27.5 \ldots \text { seen } \\ & \text { or } \\ & 100 x-x=275 \ldots-2.75 \ldots \\ & \text { or } 99 x=272.8 \text { with } \\ & 100 x=275 \ldots \text { seen } \end{aligned}$	M1dep	oe subtraction to eliminate recurring digits eg 1000x-10x = ....-27.5...   or $990 x=2728$ with $1000 x=$   and $10 x=27.5 \ldots$ seen   numbers must all be correct
$x=2$. ... stated and M2 scored and $9 x=24.8$   and $x=\frac{24.8}{9}=\frac{124}{45}$   or   $x=$. ... stated and M2 scored   and $90 x=248$   and $x=\frac{248}{90}=\frac{124}{45}$   or   $x=$. ... stated and M2 scored   and $99 x=272.8$   and $x=\frac{272.8}{99}=\frac{124}{45}$	A1	oe eg $x=$. ... stated and M2 scored and $990 x=2728$   and $x=\frac{2728}{990}=\frac{124}{45}$

Mark scheme continues on the next page

Question	Answer	Mark	Comments


$\begin{gathered} 27 \\ \text { cont } \end{gathered}$	Alternative method 2 Working with 0.75.....		
	$10 x=\ldots$   or $100 x=$	M1	oe multiplication by a power of 10 eg $1000 x=$....   any letter
	$\begin{aligned} & 10 x-x=7.5 \ldots-\ldots \\ & \text { or } 9 x=6.8 \text { with } 10 x=\ldots \text { seen } \\ & \text { or } \\ & 100 x-10 x=\ldots \ldots-\ldots \\ & \text { or } 90 x=68 \text { with } 100 x=\ldots \text { seen } \\ & \text { and } 10 x=\ldots . . . \\ & \text { or } \\ & 100 x-x=\ldots \ldots-\ldots \\ & \text { or } 99 x=74.8 \\ & \text { with } 100 x=\ldots \ldots \text { seen } \end{aligned}$	M1dep	oe subtraction to eliminate recurring digits eg 1000x-10x=   or $990 x=748$ with $1000 x=\quad . .$.   and $10 x=$. ... seen   numbers must all be correct
	$x=0$. ... stated and M2 scored and $9 x=6.8$ and $x=\frac{6.8}{9}$ and $2 \frac{6.8}{9}=\frac{124}{45}$ or $x=0$. ... stated and M2 scored and $90 x=68$ and $x=\frac{68}{90}$ and $2 \frac{68}{90}=\frac{124}{45}$ or $x=0$. ... stated and M2 scored and $99 x=74.8$ and $x=\frac{74.8}{99}$ and $2 \frac{74.8}{99}=\frac{124}{45}$	A1	oe eg $x=0$. ... stated and M2 scored and $990 x=748$ and $x=\frac{748}{990}$ and $2 \frac{748}{990}=\frac{124}{45}$

Mark scheme continues on the next page

Question	Answer	Mark	Comments


$\begin{gathered} 27 \\ \text { cont } \end{gathered}$	Alternative method 3 Working with 0.05.....		
	$10 x=0 . \ldots$   or $100 x=$. ...	M1	oe multiplication by a power of 10 eg $1000 x=55.5 \ldots$   any letter
	$10 x-x=0 . \ldots-0.0 \ldots$   or $9 x=0.5$ with $10 x=$.... seen or $100 x-10 x=\ldots-0 . . .$ $\text { or } 90 x=5 \text { with } 100 x=\ldots$   and $10 x=\ldots$ seen or $100 x-x=\ldots-0.0 \ldots$   or $99 x=5.5$ with $100 x=\ldots \text { seen }$	M1dep	oe subtraction to eliminate recurring digits eg $1000 x-10 x=\ldots . . . .$.   or $990 x=55$ with $1000 x=\quad$...   and $10 x=\ldots$ seen   numbers must all be correct
	$x=0.0 \ldots$ stated and M2 scored and $9 x=0.5$ and $x=\frac{0.5}{9}$ and $2.7+\frac{0.5}{9}=\frac{124}{45}$ or $x=0.0 \ldots$ stated and M2 scored and $90 x=5$ and $x=\frac{5}{90}$ and $2.7+\frac{5}{90}=\frac{124}{45}$ or $x=0.0 \ldots$ stated and M2 scored and $99 x=5.5$ and $x=\frac{5.5}{99}$ and $2.7+\frac{5.5}{99}=\frac{124}{45}$	A1	oe eg $x=0.05 \ldots$ stated and M2 scored and $990 x=55$ and $x=\frac{55}{990}$ and $2.7+\frac{55}{990}=\frac{124}{45}$

## Additional guidance continues on the next page

Question	Answer	Mark	Comments




Question	Answer	Mark	Comments


28(b)	Alternative method 1			
	$x-7=3 y$ or $y-7=3 x$	M1	allow $x-7=3 g$ or $g-7=3 x$	
	$\frac{x-7}{3}$ or $\frac{y-7}{3}$	A1	oe allow $\frac{g-7}{3}$	
	-1.4 or $-\frac{7}{5}$	A1	oe	
	Alternative method 2			
	$3(2 x)+7$	M1	oe	
	$\begin{aligned} & x=3(2 x)+7 \\ & \text { or } x=6 x+7 \end{aligned}$	A1	oe equation	
	-1.4 or $-\frac{7}{5}$	A1	oe	
	Additional Guidance			
	Beware   $-3 x-7=2 x$ leading to -1.4			MOAOAO

