GCSE

MATHEMATICS

8300/2H

Higher Tier Paper 2 Calculator

Mark scheme

June 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a,b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

| $\mathbf{2}$ | $11.5 \mathrm{~m} \leqslant$ height $<12.5 \mathrm{~m}$ | B 1 | |
| :--- | :---: | :---: | :---: | :---: |
| | Additional Guidance | | |
| | | | |

| 3 | $5: 2$ | B1 | |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

4	$A \cap B$	$B 1$		
	Additional Guidance			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

6	Alternative method 1			
	$18 \div 36$ or 0.5 or 30	M1	oe implied by 3.5 or 3 h 30 min or $3.3(0)$ or 210 seen	
	$\frac{200-18}{4-\text { their } 0.5}$ or $\frac{182}{3.5}$ or $\frac{200-18}{4 \times 60-\text { their } 30}$ or $\frac{182}{210}$ or $0.86(6 \ldots)$ or 0.87	M1dep	oe method for miles per hour or miles per minute implied by $\frac{182}{3 \mathrm{~h} 30 \mathrm{~min}}$ or $\frac{182}{3.3(0)}$	
	52	A1		
	Alternative method 2			
	$18 \div 36$ or 0.5 or 30	M1	implied by 7	
	$\frac{200}{4}+\frac{50-36}{7} \text { or } 50+2$	M1dep	oe	
	52	A1		
	Additional Guidance			
	Allow the first mark even if not subsequently used			
	Ignore units for the M marks			
	Answer 0.86(6...) or 0.87			M1M1A0
	Answer $0.86(6 \ldots)$ or 0.87 with mph crossed out and replaced by miles per min oe			M1M1A1
	Working for 52 then $(52+36) \div 2$			M1M1A0
	NB $50+2=52$ from $200 \div 4=50$ and $36 \div 18=2$			Zero

Question	Answer	Mark	Comments

Alternative method 1

8^{2} or 64 and 17^{2} or 289	M1	
$\sqrt{17^{2}-8^{2}}$ or $\sqrt{225}$ or 15	M1dep	oe implies M2 may be seen on diagram
$8 \times 3 \times$ their 15 or $24 \times$ their 15	M1dep	dep on M2 oe eg $(8+16) \times$ their 15 or $0.5 \times 8 \times$ their 15×6
360	A1	SC2 $4448.8,456]$

Alternative method 2

$\cos C=\frac{8}{17}$ or $C=[61.9,62]$	M 1	may be seen on diagram					
$17 \times$ sin their $[61.9,62]$ or $[14.9,15.1]$	M1dep	may be seen on diagram oe eg $8 \times$ tan their $[61.9,62]$					
$8 \times 3 \times$ their $[14.9,15.1]$ or $24 \times$ their $[14.9,15.1]$ or $[357.6,362.4]$	M1dep	dep on M2 oe eg $(8+16) \times$ their $[14.9,15.1]$ or $0.5 \times 8 \times$ their $[14.9,15.1] \times 6$					
360	A1	SC2 [448.8, 456]	$	$	Alternative method 3	M1	may be seen on diagram
:---	:---	:---					
$\sin A=\frac{8}{17}$ or $A=[28,28.1]$	M1dep	may be seen on diagram oe eg $8 \div$ tan their $[28,28.1]$					
$17 \times \cos$ their $[28,28.1]$ or $[14.9,15.1]$	dep on M2 oe eg $(8+16) \times$ their $[14.9,15.1]$ or $0.5 \times 8 \times$ their $[14.9,15.1] \times 6$						
$8 \times 3 \times$ their $[14.9,15.1]$ or $24 \times$ their $[14.9,15.1]$ or $[357.6,362.4]$	A1	SC2 [448.8, 456]					
360							

Alternative method and Additional Guidance continued on the next page

Question	Answer	Mark	Comments

7 cont	Alternative method 4			
	$\cos C=\frac{8}{17}$ or $C=[61.9,62]$	M1	may be seen on diagram	
	$\begin{aligned} & \frac{1}{2} \times 8 \times 17 \times \sin \text { their }[61.9,62] \\ & \text { or }[59.9,60.1] \end{aligned}$	M1dep	oe	
	$\begin{aligned} & 6 \times \text { their }[59.9,60.1] \\ & \text { or }[357.6,362.4] \end{aligned}$	M1dep	oe	
	360	A1	SC2 [448.8, 456]	
	Additional Guidance			
	15 without a contradictory value for $A B$ scores the first two marks on Alt method 1 , even if not subsequently used			M1M1
	$\sqrt{17^{2}+8^{2}}$			M1M0
	$3^{\text {rd }} \mathrm{M} 1$ is for the total area and may be calculated in various ways eg using a trapezium + a triangle			
	$3^{\text {rd }} \mathrm{M} 1$ is for the total area so further work will lose the mark eg 360 seen followed by $360-60$, answer 300			M1M1M0A0
	May use sine rule or cosine rule but must reach $A B=\ldots$. to award the second M1 in Alt 2 or 3			

Additional Guidance continues on the next two pages

8 cont	Additional Guidance	
	Unlabelled notches do not indicate the point ($0,-2$)	
	A table of values does not indicate the point ($0,-2$)	
	Graph consisting only of straight lines	B0
	A fully correct curve but point $(0,-2)$ is not indicated	B1
	Partially correct curve with point $(0,-2)$ indicated	B1
	Fully correct curve with point $(0,-2)$ indicated	B2

Additional Guidance continues on the next page

8 cont	Additional Guidance	
	Partially correct curve with point $(0,-2)$ indicated	B1
	Curve includes a negative gradient so not partially correct	B0

Question	Answer	Mark	Comments	
9(a)	continuous \quad grouped		B1	both circled
	Additional Guidance			

9(b)	Alternative method 1			
	$380 \div 2$ or $(380+1) \div 2$ or $381 \div 2$ or 190 or 190.5 or 191	M1	oe eg $\frac{59+158+106+45+12}{2}$ may be seen by the table	
	$2<t \leqslant 4$ with 190 or 190.5 or 191 seen	A1		
	Alternative method 2			
	$\begin{aligned} & 2<t \leqslant 4 \\ & \text { with } \\ & 59+158-106-45-12=54 \text { seen } \end{aligned}$	B2	oe calcula B1 $59+1$	$\begin{aligned} & =54 \\ & =54 \mathrm{oe} \end{aligned}$
	Additional Guidance			
	$2<t \leqslant 4$ with 190 or 190.5 or 191 not seen			MOAO
	Condone $2-4$ in both or one of the spaces on answer line if 190 or 190.5 or 191 seen			M1A1
	Condone missing brackets if recovered			
	Alt 254 with calculation not seen			B0
	Alt $22<t \leqslant 4$ and 54 with calculation not seen			B0

Question	Answer	Mark	Comments

9(c)	$\begin{aligned} & \frac{45+12}{380} \text { or } \frac{57}{380} \text { or } \frac{3}{20} \text { or } 0.15 \\ & \text { or } 100 \div \frac{380}{57} \text { or } 57 \div 3.8 \end{aligned}$	M1	oe proportion or calculation must use 380	
	15	A1		
	Additional Guidance			
	$1-\frac{59+158+106}{380}$ or $1-\frac{323}{380}$ or $1-\frac{17}{20}$ or $1-0.85$			M1
	Correct proportion seen even if not subsequently used			M1A0
	Do not allow misreads of 380			
	Build-up eg $10 \%=380 \div 10$ or 38 $5 \%=38 \div 2$ or 19 $38+19=57$ is MOA0 unless answer 15			

Question	Answer	Mark	Comments

10	-1 012	B3	B2 three correct values with no incorrect values or $-3-2-10112 \text { and }-10122345$ or interval that contains only the integers -1 012 B1 -3 -2 -101012 or -1012345 SC2 answer 2345	
	Additional Guidance			
	Examples of intervals that contain only the integers -1 012 $-1 \leqslant x \leqslant 2 \text { or }[-1,2] \quad \text { or }-2<x<3 \text { or }(-2,3)$ -1 012345 may be shown as an interval that contains only these integers eg $-1 \leqslant x<6$ or $[-1,6$)			
	Intervals can be shown on a number line			
	-3-2-10012can not be shown as an interval or on a number line			
	Lists may be in any order eg $12345-10$			B1
	Condone repeats in lists eg -1 0112			B3
	Ignore commas/and/or between numbers in lists			
	-3 -2 -1 01123445 with no other valid working			B0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments
12	0.3	B1	
	Additional Guidance		

13	Alternative method 1		
	Any three of $[9.5,10.5] \times 22 \text { or }[209,231]$ and $[29.5,30.5] \times 9 \text { or }[265.5,274.5]$ and $[49.5,50.5] \times 6 \text { or }[297,303]$ and $[69.5,70.5] \times 3 \text { or }[208.5,211.5]$ or 1000	M1	
	$\begin{aligned} & \text { (their }[209,231] \\ & \text { + their }[265.5,274.5] \\ & \text { + their }[297,303] \\ & \text { + their }[208.5,211.5]) \div 40 \\ & \text { or } \\ & 1000 \div 40 \end{aligned}$	M1dep	oe condone bracket error if working seen eg $220+270+300+210 \div 40$
	25	A1	
	$\frac{35}{\text { their } 25} \text { or } \frac{7}{5} \text { or } 1.4$	M1	$\text { oe eg } 1+\frac{35-\text { their } 25}{\text { their } 25}$
	140	A1ft	ft their 25 with 3rd M1 scored

Mark scheme and Additional Guidance continue on the next two pages

Question	Answer	Mark	Comments

13 cont	Alternative method 2		
	Any three of $[9.5,10.5] \times 22 \text { or }[209,231]$ and $[29.5,30.5] \times 9 \text { or }[265.5,274.5]$ and $[49.5,50.5] \times 6 \text { or }[297,303]$ and $[69.5,70.5] \times 3 \text { or }[208.5,211.5]$ or 1000	M1	
	35×40 or 1400	M1	
	1000 and 1400	A1	
	$\frac{\text { their } 1400}{\text { their } 1000}$ or $\frac{7}{5}$ or 1.4	M1dep	$\begin{aligned} & \text { oe eg } 1+\frac{\text { their } 1400-\text { their } 1000}{\text { their } 1000} \\ & \text { dep on M2 } \end{aligned}$
	140	A1ft	ft their 1400 and their 1000 with M3 scored

Additional Guidance is on the next page

13 cont	Additional Guidance	
	Alt 1 Correct products seen in the table but a different method not using their products used for the mean shown in the working lines eg $40 \div 4=10$ can score a maximum of MOMOAOM1A1ft	
	Alt $11000 \div 4(=250)$ is not a misread	
	NB The dependency of the M marks and the requirement for applying A1ft are different for the two alternative methods	
	Alt 1 3rd M1 Allow any number for their 25 (unless it contradicts their mean)	
	Alt 1 3rd M1 and A1ft If there is a mean for the boys allow the M mark to be implied by a correct ft answer eg from a mean of 250 allow M1A1ft for 14%	
	For A1ft allow answers to the nearest whole number or better	
	Further work after working out the percentage is 3rd M0 $\begin{aligned} & \text { eg Mean }=25 \\ & \frac{35}{\text { their } 25} \times 100=140 \end{aligned}$ $140-100=40 \quad \text { Answer } 40$	M1M1A1 MOAO

Question	Answer	Mark	Comments

14(a)	(Ali) $5 \times 4 \times 3$ or 60 or (Mel) $4 \times 3 \times 2$ or 24	M1	oe eg (Ali) 5×1	
	$5 \times 4 \times 3-4 \times 3 \times 2$ or $60-24$	M1dep	oe implies M2	
	36 with no incorrect method seen	A1	SC1 answer 61	
	Additional Guidance			
	Ignore any listing of possible codes			
	48-12=36 (incorrect method seen)			MOMOAO
	1st M1 Further work eg1 60 followed by 60×3 eg2 $6 \times 4=24$ followed by $24 \times 2=48$			MO

14(b)	\checkmark	It is bigger than my answer to part (a) It is smaller than my answer to part (a) It is the same as my answer to part (a)	B1	
	Additional Guidance			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments	
16	$\frac{1}{2} \times 14 \times A C=80.5$	M1	oe eg $7 A C=80.5$ any letter for $A C$	
	$\frac{80.5 \times 2}{14}$ or $\frac{161}{14}$ or 11.5	M1dep	oe eg $\frac{80.5}{7}$ implies M2 may be seen on diagram	
	$\begin{aligned} & \frac{1}{2} \times 19 \times \text { their } 11.5 \times \sin 36 \\ & \text { or } 64.21 \ldots \text { or } 64.22 \text { or } 64 \end{aligned}$	M1	oe 64.21... or 64.22 or 64 scores M3 if no incorrect formula used	
	64.2 with no incorrect formula used	A1		
	Additional Guidance			
	Answer 64.2 with no incorrect working			M3A1
	11.5 scores M2 even if not subsequently used			
	Answer 64.2 from using ' $b h$ ' and ' $a b s$ in C ' (unless clear explanation that $\frac{1}{2}$ has been cancelled in both area formulae) $\begin{aligned} & 14 \times A C=80.5 \\ & \frac{80.5}{14}=5.75 \end{aligned}$ $19 \times 5.75 \times \sin 36$ 64.2			$\begin{aligned} & \text { M0 } \\ & \text { M0 } \\ & \text { M0 } \\ & \text { A0 } \end{aligned}$
	3rd M1 can be scored if they have a value for $A C$ eg $A C=6$ (may be seen on diagram)$\frac{1}{2} \times 19 \times 6 \times \sin 36=33.5$			MOMO M1A0
	$\begin{aligned} & \text { 3rd M1 may be seen in stages } \\ & \text { eg1 } 11.5 \times \sin 36 \text { or }[6.7,6.8] \\ & \frac{1}{2} \times 19 \times[6.7,6.8] \\ & \text { eg2 } 19 \sin 36 \text { or }[11.1,11.2] \\ & \frac{11.5 \times[11.1,11.2]}{2} \end{aligned}$			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

18	$(b: g=) 4: 1$ or $(b: w=) 6: 10$ or states a number of blue discs that is four times the number of green discs or states a number of blue discs and a number of white discs that are in the ratio $3: 5$ (not 3 and 5) or $b=4 g$ or $\frac{b}{w}=\frac{3}{5}$	M1	oe ratio or equation eg (b:g=) $3: 0.75$ or 4 blue 1 green or 6 blue 10 white or $5 b=3 w$ do not allow ($\mathrm{b}: \mathrm{w}=$) $3: 5$
	Three numbers of the form $12 n, 3 n$ and $20 n$ where $n>0$ or unsimplified fraction equivalent to $\frac{32}{35}$	A1	any order may be seen in a ratio or as numbers of discs eg 12:3:20 or 1001560 or 30.755 or $4: 1: \frac{20}{3}$ or $\frac{12+20}{12+3+20}$ or $\frac{3+5}{+0.75+5} \mathrm{Or}_{85}$ 8 3 or $\frac{b+\frac{5}{3} b}{b+\frac{5}{3} b+\frac{1}{4} b}$ or $\frac{\frac{8}{3} b}{\frac{35}{12} b}$
	$\frac{32}{35} \text { or } 0.91(4 \ldots) \text { or } 91 .(4 \ldots) \%$	A1	oe fraction eg $\frac{64}{70}$

Additional Guidance is on the next page

18 cont	Additional Guidance	
	Ignore conversion of a correct fraction to a decimal or percentage	
	Ignore incorrect simplification of a correct fraction	
	Answer 32 : 35	M1A1A0
	Final A1 fraction answers must be $\frac{\text { integer }}{\frac{\text { integer }}{}}$	
	$1: 4$ only scores M1 if indicated as g : b	
	10:6 only scores M1 if indicated as w: b	
	1st M1 may be embedded eg1 $b: g: w=4: 1: 10$ eg2 $b: g: w=6: 3: 10$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$
	Condone $4 \mathrm{~b}: \mathrm{g}$ as an indication of 4 blue and 1 green etc	

Question	Answer	Mark	Comments

Alternative method 1

$\begin{aligned} & \frac{n^{2}+n}{2} \text { or } \frac{n^{2}+2 n+n+2}{2} \\ & \text { or } \frac{n^{2}+3 n+2}{2} \end{aligned}$	M1	may be seen in stages eg $n^{2}+n$ followed by $\frac{n^{2}+n}{2}$
$\begin{aligned} & \frac{n^{2}+n}{2} \text { and } \frac{n^{2}+2 n+n+2}{2} \\ & \text { or } \\ & \frac{n^{2}+n}{2} \text { and } \frac{n^{2}+3 n+2}{2} \end{aligned}$	M1dep	may be seen in stages eg $n^{2}+n$ followed by $\frac{n^{2}+n}{2}$ and $n^{2}+3 n+2$ followed by $\frac{n^{2}+3 n+2}{2}$ implies M2
$\frac{2 n^{2}+4 n+2}{2} \text { or } n^{2}+2 n+1$ with M2 seen	A1	oe single fraction with terms collected $\text { eg } \frac{4 n^{2}+8 n+4}{4}$
$n^{2}+2 n+1 \text { and }(n+1)^{2}$ with M2A1 seen	A1	allow $(n+1)(n+1)$ for $(n+1)^{2}$
Alternative method 2		
$\frac{n+1}{2}(n+n+2)$	M1	$\text { oe eg }(n+1)\left(\frac{n}{2}+\frac{n+2}{2}\right)$
$\begin{aligned} & \frac{n+1}{2}(2 n+2) \\ & \text { or } \underline{n}^{2} \frac{+n}{2}+\underline{n}^{2} \frac{+n}{2}+\frac{2 n+2}{2} \end{aligned}$ with M1 seen	M1dep	
$\frac{2 n^{2}+4 n+2}{2} \text { or } n^{2}+2 n+1$ with M2 seen	A1	oe single fraction with terms collected $\mathrm{eg} \frac{4 n^{2}+8 n+4}{4}$
$n^{2}+2 n+1 \text { and }(n+1)^{2}$ with M2A1seen	A1	allow $(n+1)(n+1)$ for $(n+1)^{2}$

Mark scheme and Additional Guidance continue on the next two pages

Question	Answer	Mark	Comments

20 cont	Alternative method 3		
	$\frac{n+1}{2}(n+n+2)$	M1	oe eg $(n+1)\left(\frac{n}{2}+\frac{n+2}{2}\right)$
	$\frac{n+1}{2}(2 n+2)$ with M1 seen	M1dep	$\text { oe eg } \frac{(n+1)(2 n+2)}{2}$
	$(n+1)^{2}$ with M2 seen	A2	A1 $2(n+1) \frac{n+1}{2}$ or $\frac{2(n+1)^{2}}{2}$ allow $(n+1)(n+1)$ for $(n+1)^{2}$

Additional Guidance is on the next page

20 cont	Additional Guidance	
	Only substituting in values of n	MOMOAOAO
	Consistently using a different letter to n can score up to M1M1A1A1	
	Using two different letters consistently within the two fractions (eg n replaced by x in the first equation and n replaced by y in the second equation) can score a maximum of M1M1A0A0 unless recovered to the same letter	
	Multiplying fractions instead of adding can score a maximum of M2A0	
	For M marks condone eg $n 2$ for $2 n$ etc	
	$n^{2}+n / 2$ and $n^{2}+3 n+2 / 2$ recovered to $\frac{2 n^{2}+4 n+2}{2}$ and/or $n^{2}+2 n+1$ and/or $(n+1)^{2}$	M1M1A0A0
	$n^{2}+n / 2$ and $n^{2}+3 n+2 / 2$ not recovered	MOMOAOAO
	$n^{2}+n$ and $n^{2}+3 n+2$ recovered to $\frac{2 n^{2}+4 n+2}{2}$ and/or $n^{2}+2 n+1$ and/or $(n+1)^{2}$	M1M1A0A0
	$n^{2}+n$ and $n^{2}+3 n+2$ not recovered	MOMOAOAO
	Equating to n^{2} in working can score a maximum of M1M1A0A0 (equating to eg x^{2} can score up to M1M1A1A1)	
	$1 n$ is allowed for n throughout	
	Alts 2 and 3 $\frac{n+1}{2}(2 n+2)$ with M1 seen scores M2 If they attempt to expand $(n+1)(2 n+2)$ use Alt 2 If they attempt to expand $\frac{1}{2}(2 n+2)$ use Alt 3	

Question	Answer	Mark	Comments

21	$\pi r \times 2 r$ or $\pi r \times 3 r$ or $2 \pi r^{2}$ or $3 \pi r^{2}$ or $5 \pi r^{2}$	M1	oe implied by a correct equation for first A1	
	$\begin{aligned} & 2 \pi r^{2}+3 \pi r^{2}=57.8 \pi \\ & \text { or } 5 \pi r^{2}=57.8 \pi \\ & \text { or } 2 \pi r^{2}=57.8 \pi \div 5 \times 2 \\ & \text { or } 3 \pi r^{2}=57.8 \pi \div 5 \times 3 \\ & \text { or } \sqrt{11.56} \end{aligned}$	A1	oe eg $\pi r \times 2 r+\pi r \times 3 r=57.8 \pi$ or $5 r^{2}=57.8$ or $r^{2}=11.56$ or $2 r^{2}=23.12$ or $3 r^{2}=34.68$	
	3.4 or $\frac{17}{5}$ or $3 \frac{2}{5}$	A1		
	Additional Guidance			
	11.56 not in a square root or a correct equation			M0
	Adding the area of a circle (or 2 circles) can score a maximum of M1A0A0 $\text { eg } 3 \pi r^{2}+\pi r^{2}=57.8 \pi$ Adding further incorrect terms scores M0			M1A0A0
	T \& I scores M1A1A1 if answer 3.4, otherwise scores 0			
	Allow $\pi r^{2} 5$ for $5 \pi r^{2}$ etc throughout			
	Answer ± 3.4			M1A1A0
	$5 \pi r^{2} \times \pi r^{2}$ or $3 \pi r^{2} \times \pi r l$ etc			MO
	Allow π to be replaced by [3.14, 3.142]			
	Answer 3 is incorrect unless 3.4 seen in working lines			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments
23	$64: 125$	B1	
	Additional Guidance		

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Alternative method 1

$(a=)-3$	B 1	
$(b=) 4$	B1ft	$\mathrm{ft} 7+$ their a correct orft
$(c=)-11$	B1ft	$\mathrm{ft} 10+7 \times$ their a correct or ft

Alternative method 2

$\begin{aligned} & x^{3}+5 x^{2}+2 x^{2}+10 x+a x^{2}+5 a x \\ & +2 a x+10 a \end{aligned}$ or $x^{3}+7 x^{2}+10 x+a x^{2}+7 a x+10 a$ or $10 a=-30 \text { or } a=-3$	M1	oe terms may be seen in a grid implied by $x^{3}+5 x^{2}+2 x^{2}+10 x-3 x^{2}-15 x-6 x-30$ or $x^{3}+7 x^{2}+10 x-3 x^{2}-21 x-30$	
$5+2+\text { their } a=b$ or $b=4$ or $10+\text { their } 5 a+\text { their } 2 a=c$ or $c=-11$ or $x^{3}+4 x^{2}-11 x-30$	M1dep	oe eg $5 x^{2}+2 x^{2}+$ their or $10 x+$ their $5 a x+$ the	
$a=-3$ and $b=4$ and $c=-11$	A1		
Additional Guidance			
Apply the scheme that awards most marks			
Allow x10 for 10x etc			
$a=-3 \quad b=4 \quad c=-11$ in working with one or both negative signs omitted on answer lines			B2
$a=-3 \quad b=4 \quad c=-11$ in working with values in a different order on answer lines			B2

Question	Answer	Mark	Comments

Alternative method 1

$y+1=\frac{2 x}{5}$ or $5 y=2 x-5$	M1	x and y may be transposed oe 1st step eg $\frac{y}{2}=\frac{x}{5}-\frac{1}{2}$
$5(y+1)=2 x$ or $5 y+5=2 x$	M1dep	x and y may be transposed oe 2 nd step eg $\frac{y}{2}+\frac{1}{2}=\frac{x}{5}$ implies M2
$\frac{5(y+1)}{2}$ or $\frac{5 y+5}{2}$	A1	may use x instead of y oe expression or calculation eg $\frac{5(3+1)}{2}$ or $\frac{5}{2}$
or $\frac{3+1}{2}$		

Mark scheme and Additional Guidance continue on the next page

Question	Answer	Mark	Comments

