GCSE MATHEMATICS

New Specimen Papers published J une 2015
Paper 2 Higher - Mark Scheme

8300/2H

Version 1.0

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q	Answer	Mark	Comments

1	1	2	4	8	B1	

$\mathbf{2}$	AAA	B1	

3	$a+20 a^{2}$	B1	

4	$y=5 x+2$	B1	
5	$\frac{4}{5}$ or 80% seen or used	M1	oe May be implied
	$29.4(0) \times 5 \div 4 \text { or } 147 \div 4$ or $29.4(0) \div 4(\times 5) \text { or } 7.35(\times 5)$ or $29.4(0) \div 0.8$	M1	oe
	36.75	A1	

6(a)		B3	B2 Any 2 or 3 of the 4 sections correct B1 Any 1 of the 4 sections correct
6(b)	1	B1ft	oe ft their Venn diagram

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

\(\left.$$
\begin{array}{|c|ll|l|l|}\hline \text { 7(a) } & \text { Two of } \frac{6}{50} \quad \frac{28}{100} \quad \frac{34}{150} & \text { B2 } & \begin{array}{l}\text { oe fraction, decimal, percentage } \\
\text { B1 One of } \frac{6}{50} \frac{28}{100} \frac{34}{150} \\
\text { one incorrect answer }\end{array}
$$

\hline with at most\end{array}\right]\)| 7(b)Chooses their probability from the
 larger number of trials
 and reason given that more trials are
 involved B1ft |
| :--- |

| Draws $3 x+2 y=6$ | B2 | B1 Works out or plots at least two points
 satisfying $3 x+2 y=6$
 eg (2, 0$)$ and $(0,3)$ |
| :---: | :--- | :---: | :--- |
| ft their graph | | |
| $\pm \frac{1}{2}$ square | | |

9(a)	Correct product using at least one prime factor	M1	For example $\begin{aligned} & 2(x) 126 \text { or } 3(x) 84 \text { or } \\ & 7(x) 36 \text { or } 2(x) 2(x) 63 \text { or } \\ & 2(x) 3(x) 42 \end{aligned}$ May be implied eg in a factor tree or repeated division
	$\begin{aligned} & 2 \times 2 \times 3 \times 3 \times 7 \text { or } \\ & 2^{2} \times 3^{2} \times 7 \end{aligned}$	A1	
9(b)	84	B1	

Q	Answer	Mark	Comments

10	Alternative method 1		
	2 parts $\rightarrow 116$	M1	oe
	$116 \div 2 \times 16$	M1	oe
	928	A1	
	Alternative method 2		
	Writes at least 3 ratios or numbers of boys and girls equivalent to $9: 7$	M1	eg 18:14 and 180:140 and $360: 280$
	522 and 406	M1	
	928	A1	

11	$(x-4)(x+8)=0$	B1	

12	1.7×10^{6} or 2×10^{6}	B3	B2 $1.72(8) \times 10^{6}$ or 1.73×10^{6} or 1700000 or 2000000 1728000 or 1730000
13	$125: 27$	B1	
\begin{tabular}{\|c	c	}	
\hline			
\end{tabular}			
:---			

\mathbf{Q}	Answer	Mark	Comments

14(a)	Alternative method 1		
	$10 \div 4 \text { or } 2.5$ or $4 \div 10$ or 0.4 or $\frac{1}{2} \times(18+10) \times 25$ or 350	M1	oe
	$18 \div$ their 2.5 or $18 \times$ their 0.4 or 7.2 or $25 \div$ their 2.5 or $25 \times$ their 0.4 or 10	M1dep	oe
	$\begin{aligned} & \frac{1}{2} \times(18+10) \times 25 \text { or } 350 \\ & \text { and } \\ & \frac{1}{2} \times(\text { their } 7.2+4) \times \text { their } 10 \text { or } 56 \end{aligned}$	M1dep	Must see working
	$350-56=294$	A1	Do not award without working seen
	Alternative method 2		
	$10 \div 4 \text { or } 2.5$ or $4 \div 10$ or 0.4 or $\frac{1}{2} \times(18+10) \times 25$ or 350	M1	oe
	$($ Area scale factor $=)(\text { their } 2.5)^{2}$ or (their 0.4) ${ }^{2}$	M1dep	
	their $350 \div$ (their 2.5$)^{2}$ or their $350 \times(\text { their } 0.4)^{2}$ or 56	M1dep	Must see working
	$350-56=294$	A1	Do not award without working seen
14(b)	$\frac{18-10}{2}$ or 4	B1	
	$\tan x=\frac{25}{\text { their } 4}$	M1	
	[80.9, 81]	A1	

Q	Answer	Mark	Comments

15	Alternative method 1		
	1800	B3	B2 $a \times b \times c \times d$ with at least 3 correct from 9, 10, 10 and 2 B1 $a \times b \times c \times d$ with at least 2 correct from 9, 10, 10 and 2 or identifies 9 possibilities for first digit or identifies 2 possibilities for final digit
	Alternative method 2		
	9000	M1	The number of digits between 1000 and 9999 inclusive
	their $9000 \div 5$	M1dep	
	1800	A1	

16	$6 c\left(c^{2}+5\right)$ or $3\left(c^{2}+5\right)$	M1	
	$\frac{6 c\left(c^{2}+5\right)}{3\left(c^{2}+5\right)}$	M1	This mark implies first M1
	$2 c$ and multiple of 2 so even	A1	oe statement Must see method

\mathbf{Q}	Answer	Mark	Comments

17(a)	Alternative method 1		
	$93000000 \times 2 \pi$ or 186000000π or [584 000000 , 584412000$]$	M1	oe Allow working in millions
	$\begin{aligned} & 365 \times 24 \\ & \text { or } 8760 \end{aligned}$	M1	
	their $186000000 \pi \div$ their 8760	M1	oe Allow working in millions Only allow if first M1 gained or if their circumference is $93000000 \times \pi$
	[6.6 $\left.\times 10^{4}, 6.7 \times 10^{4}\right]$	A1	oe
	Alternative method 2		
	$93000000 \times 2 \pi$ or 186000000π or [584 000000,584412000$]$	M1	oe Allow working in millions
	their $186000000 \pi \div 365$ or [1 598 904, 1600 033]	M1	oe Allow working in millions Only allow if M1 gained or if their circumference is $93000000 \times \pi$ their 365.25 can be 365.25×24 or 365.25×60
	their $\left[1.6 \times 10^{6}, 1.602 \times 10^{6}\right] \div 24$	M1	
	[6.6 $\left.\times 10^{4}, 6.7 \times 10^{4}\right]$	A1	oe
17(b)	The average speed would be (slightly) lower	B1	oe

AQA

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

18(a)	$(n-6)^{2}$ could be zero (so she is wrong) or The sixth term is 1	B1	oe
18(b)	1	B1	

19	$\frac{x}{3}$	B1	

Alternative method 1			
	$2=k \sqrt{36}$ or $\sqrt{36}=6$	M1	
	$(k=) 2 \div$ their 6 or $\frac{1}{3}$	M1dep	
	$5 \div$ their $\frac{1}{3}$ or $15(\sqrt{a}=)$	M1	oe
	225	A1	
Alternative method 2			
20	$2 k=\sqrt{36}$ or $\sqrt{36}=6$	M1	
	($k=$) their $6 \div 2$ or 3	M1dep	
	$5 \times$ their 3 or $15(\sqrt{a}=)$	M1	oe
	225	A1	
Alternative method 3			
	$2 k=\sqrt{36}$ or $\sqrt{36}=6$	M1	
	$5 \div 2$ or 2.5	M1	
	their $6 \times$ their 2.5 or $15(\sqrt{a}=)$	M1dep	dep on M1 M1
	225	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 5 on next page

AQA

Q	Answer	Mark	Comments
21	Alternative method 5		
	$\frac{1}{6} \text { (free for A) }$	M1	oe fraction or decimal or percentage
	$\frac{3}{18}(\text { free for } A) \text { and } \frac{3}{20} \text { (free for B) }$	M1	oe pairs of fractions or pairs of decimal or pairs of percentages
	$\frac{3}{18}$ (free for A) and $\frac{3}{20}$ (free for B) and (Option) A	A1	

\mathbf{Q}	Answer	Mark	Comments

22	Alternative method 4		
	$\frac{15}{25}$ or $\frac{30}{11}$	M1	
	$\frac{15}{25} \times \frac{30}{11}$ or $\frac{18}{11}$	M1dep	oe fraction
	their $\frac{18}{11} \times 22$	M1	
	36	A1	
	Alternative method 5		
	$25 \times h=22$ or $\frac{22}{25}$ or 0.88	M1	oe
	$0.88 \div 11$ or 0.08	M1dep	oe eg frequency density axis labelled with correct scale
	their $0.08 \times 30 \times 15$	M1	
	36	A1	

23	$\begin{aligned} & 1 \times \frac{4}{1} \times \pi \times 6_{3} \text { or } 144 \pi \\ & 2 \end{aligned}$	M1	oe eg [452, 452.45]
	$\frac{2}{5} \times \text { their } 144 \pi=\frac{1}{3} \times \pi \times x^{2} \times 12$ or $57.6 \pi=4 \pi x^{2}$	M1	oe eg $[180.8,181]=[12.5,12.6] x^{2}$ Must equate two volumes in terms of π
	$3 \times \frac{2}{5} \times$ their $144 \pi \div 12 \pi$ or 14.4	M1dep	oe eg their $[180.8,181] \div$ their $[12.5,12.6]$ dep on 2nd M1 Correct working to isolate x^{2}
	[3.79, 3.8]	A1	

AQA

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

24(a)	$\cos x=\frac{O A}{15}$ or $O A=15 \cos x$	M1	
	$O A=15 \cos x$ and $O B=15+2$ and $h=O B-O A=17-15 \cos x$	A1	
	$17-15 \cos 120$ or $15 \sin 30$ or 7.5	M1	A1
	24.5	oe	
24(c)	(180, 32)	B1 one correct coordinate SC1 (32, 180)	

25(a)	Alternative method 1		
	$a=2$ or $2\left(x^{2}-3 x+2.5\right)$ or $2\left(x^{2}-3 x\right)+5$	M1	
	$x^{2}-3 x=(x-1.5)^{2}-1.5{ }_{5}{ }^{2}$	M1dep	oe ft their $x^{2}-3 x$
	$a=2$ and $b=1.5$ and $c=0.5$	A1	oe eg $2(x-1.5)^{2}+0.5$
	Alternative method 2		
	$a=2$	B1	
	$\begin{align*} & x^{2}-b x-b x+b^{2} \tag{or}\\ & x^{2}-2 b x+b^{2} \\ & -2 a b=-6 \\ & -a b=-3 \\ & b=1.5 \end{align*}$	M1	oe
	$a=2$ and $b=1.5$ and $c=0.5$	A1	oe eg $2(x-1.5)^{2}+0.5$

\mathbf{Q}	Answer	Mark	Comments

25(b)	Alternative method 1		
	their $2(x-1.5)=8.5$ - their 0.5	M1	
	their $(x-1.5)= \pm \sqrt{\frac{8.5-\text { their } 0.5}{2}}$	M1dep	oe
	3.5 and -0.5	A1	oe
	Alternative method 2		
	$\begin{aligned} & 2 x^{2}-6 x-3.5(=0) \text { or } \\ & 4 x^{2}-12 x-7(=0) \end{aligned}$	M1	oe 3-term quadratic equation or expression
	Correct use of quadratic formula $\text { eg } \frac{--12 \pm \sqrt{(-12)^{2}-4 \times 4 \times-7}}{2 \times 4}$ or correct factorisation eg $(2 x-7)(2 x+1)=0$	M1dep	oe
	3.5 and -0.5	A1	oe

$\mathbf{2} \mathbf{2 6}$	144% or 1.44 seen	B1	
	$\sqrt{1.44}$ or 1.2	M1	oe
	their 1.2×32	M1dep	
	38.4	A1	

Copyright © 2015 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

