AQA

Please write clearly in block capitals. Centre number

Candidate number

Surname
Forename(s) \qquad
Candidate signature \qquad
GCSE
MATHEMATICS

Thursday 8 November 2018 Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
$22-23$	
TOTAL	

- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

What does $(A \cap B)$ represent in $\quad P(A \cap B)$?
Circle your answer.

A or B or both
not A and not B
P is $(4,9)$ and Q is $(-2,1)$
Circle the midpoint of $P Q$.
$(1,5)$
$(3,4)$
$(3,5)$
$(6,8)$
[1 mark]
13579

1392781
The bearing of A from B is 310°
Circle the bearing of B from A.
$050^{\circ}$$\quad 110^{\circ} \quad 130^{\circ} \quad 220^{\circ}$
$5 \quad$ A circle has circumference C and diameter d.

$$
C=k d
$$

What value does the constant k represent?
\qquad

6 Here is some information about 20 trains leaving a station.

Number of minutes late, \boldsymbol{t}	Number of trains	Midpoint	
$0 \leqslant t<5$	12		
$5 \leqslant t<10$	7		
$10 \leqslant t<15$	1		
$t \geqslant 15$	0		

6 (a) Work out an estimate of the mean number of minutes late.
minutes

6 (b) The station manager looks at the information in more detail.

Number of minutes late, t	Number of trains
$0 \leqslant t<2$	12
$2 \leqslant t<4$	0
$4 \leqslant t<6$	7
$6 \leqslant t<8$	0
$8 \leqslant t<10$	0
$10 \leqslant t<12$	1

He works out an estimate of the mean using this information.
How does his estimate compare with the answer to part (a)? Tick one box.

Higher than part (a)

Same as part (a)

Lower than part (a)

Turn over for the next question
$7 \quad$ Work out the values of a and b in the identity

$$
5(7 x+8)+3(2 x+b) \equiv a x+13
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $a=$ \qquad $b=$ \qquad

$$
a=
$$ b

8 Two identical quarter circles are cut from a rectangle as shown.

Not drawn accurately

Work out the shaded area.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad cm^{2}

9 The diagrams show the position of a tap when off and fully on. The tap is fully on when the angle of turn is 180°

When fully on, water flows out of the tap at 14 litres per minute.
The rate at which water flows out is in direct proportion to the angle of turn.
The tap is turned 135°

The water flows into a tank with a capacity of 79.8 litres.
Will it take less than $7 \frac{1}{2}$ minutes to fill the tank?
You must show your working.
[4 marks]
\qquad

11 An approximation for the value of π is given by

$$
4\left(1-\frac{22}{57}+\frac{22}{85}-\frac{22}{105}+\frac{22}{117}-\frac{22}{242}\right)
$$

Use your calculator to show that this approximation is within 0.1 of 3.14
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$12 \quad$ Work out $\frac{9.12 \times 10^{10}}{3.2 \times 10^{4}}$
Give your answer in standard form.
\qquad
\qquad
\qquad

Answer \qquad

13 Ashraf is going to put boxes into a crate.
The crate is a cuboid measuring 2.5 m by 2 m by 1.2 m
Each box is a cube of length 50 cm
He does these calculations.

volume of crate	$=2.5 \times 2 \times 1.2$
	$=6 \mathrm{~m}^{3}$
volume of one box	$=0.5 \times 0.5 \times 0.5$
	$=0.125 \mathrm{~m}^{3}$
number of boxes	$=6 \div 0.125$
	$=48$

He claims,
"I can put 48 boxes in the crate."
Evaluate Ashraf's method and claim.
\qquad
\qquad
\qquad
\qquad
\qquad

14 The cross section of a prism has n sides.
Circle the expression for the number of edges of the prism.
[1 mark]
$2 n$
$3 n$

$$
n+2
$$

$2 n+3$

15 The volume of a medal is $45 \mathrm{~cm}^{3}$
The medal is made from copper and tin.
volume of copper : volume of tin $=22: 3$
The density of copper is $8.96 \mathrm{~g} / \mathrm{cm}^{3}$
The density of tin is $7.31 \mathrm{~g} / \mathrm{cm}^{3}$
Work out the mass of the medal.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad grams

16 The cumulative frequency graph shows information about the masses of 50 apples.

16 (a) Use the graph to estimate the median mass of the apples.

Answer \qquad grams

16 (b) Estimate the proportion of the apples that have a mass greater than 115 grams.
\qquad
Answer \longrightarrow
$17 \quad a$ is a prime number.
b is an even number.
$N=a^{2}+a b$
Circle the correct statement about N.
could be
even or odd
always even
always odd

18 A bag contains 20 discs.
10 are red, 7 are blue and 3 are green.

18 (a) Marnie takes a disc at random before putting it back in the bag.
Nick then takes a disc at random before putting it back in the bag.
Olly then takes a disc at random.
Work out the probability that they all take a red disc.

Answer
(b) All 20 discs are in the bag.

Reggie takes three discs at random, one after the other.
After he takes a disc he does not put it back in the bag.
Reggie's first disc is blue.
Work out the probability that all three discs are different colours.

[3 marks]

19

Lunch

Choose one starter and one main course

There are four starters and ten main courses to choose from.
Two of the starters and three of the main courses are suitable for vegans.
What percentage of the possible lunches have both courses suitable for vegans?
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \%
n is a positive integer.
Prove algebraically that $\quad 2 n^{2}\left(\frac{3}{n}+n\right)+6 n\left(n^{2}-1\right) \quad$ is a cube number.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$21 y$ is inversely proportional to $\sqrt{ } x$

$$
y=4 \text { when } x=9
$$

21 (a) Work out an equation connecting y and x.

Answer

21 (b) Work out the value of y when $x=25$

Answer

Turn over for the next question

\qquad

Answer \qquad
$P Q R$ is a straight line.
$P Q: Q R=3: 1$
$\overrightarrow{P Q}=\mathbf{a}$
Not drawn
accurately

Circle the vector $\overrightarrow{R Q}$
[1 mark]
$\frac{1}{3} \mathbf{a}$
$\frac{1}{4} \mathbf{a}$
$-\frac{1}{3} a$
$-\frac{1}{4} \mathbf{a}$
$24 \quad$ Here is a sketch of $\quad y=\mathrm{f}(x)$
The curve passes through the points

$$
(-2,-10) \quad(-1,-3) \quad(0,-2) \quad(1,-1) \quad(2,6)
$$

On the grid, sketch the curve $\quad y=\mathrm{f}(x+2)$
$25 \quad A B C$ and $A C D$ are triangles.

Work out the size of angle x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad degrees
$26 \quad \mathrm{f}(x)=\frac{x}{x+2} \quad \mathrm{~g}(x)=x^{2}-2$
Work out $\operatorname{fg}(x)$
Give your answer in the form $a+b x^{n} \quad$ where a, b and n are integers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

27 The point $\left(3, \frac{1}{64}\right)$ lies on the curve $y=k^{x}$ where k is a constant.
Show that the point $\left(\frac{1}{2}, \frac{1}{2}\right)$ lies on the curve.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

28 Izzy runs an 80-metre race in 14 seconds.
During the first 6 seconds her speed increases at a constant rate.
During the last 8 seconds her speed increases at a different constant rate.
Her speed at 14 seconds is $2 \mathrm{~m} / \mathrm{s}$ more than her speed at 6 seconds.
Here is a sketch of her speed-time graph.

28 (a) Work out her acceleration during the last 8 seconds. State the units of your answer.

Not drawn accurately

Answer

28 (b) When Izzy finishes the 80-metre race, her speed is $v \mathrm{~m} / \mathrm{s}$
Work out the value of v.

Answer

END OF QUESTIONS

