GCSE MATHEMATICS

New Specimen Papers published J une 2015
Paper 3 Foundation - Mark Scheme

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B Marks awarded independent of method.
ft

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.
$3.14 \ldots \quad$... Accept answers which begin $3.14 \mathrm{eg} 3.14,3.142,3.1416$

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{1 (a)}$	9	B1	
$\mathbf{1 (b)}$	6	B1	

$\mathbf{2}$	C	B1	
3 27 B1			

$\mathbf{4}$	$7500-1875$ or 5625	M1	
	their $5625 \div 36$	M1	
	156.25	A1	

5	$(120+80) \div 4$ or $200 \div 4$ or 50	M1	
	$120 \div 3$ or 40	M1	
	their $50-$ their 40 or 10	M1dep	dependent on at least M1
	$\frac{10}{80}$ or $\frac{1}{8}$	A1	oe fraction

$\mathbf{6}$ 6(a)	Box $\mathrm{A} \rightarrow \mathrm{P}(3)=\frac{1}{6}$ and		Allow one incorrect probability
	Box $\mathrm{B} \rightarrow \mathrm{P}(3)=\frac{1}{3}$ and	M1	
	Box $\mathrm{D} \rightarrow \mathrm{P} \rightarrow \mathrm{P}(3)=\frac{2}{5}$ and		
	or $\frac{1}{2}$		
	(Box) D and all probabilities correct	A1	
$\mathbf{6 (b)}$	(Box) A and (Box) B	B 1	

\mathbf{Q}	Answer	Mark	Comments

7(a)	$240-87.5(0)$ or $152.5(0)$	M1	
	152.50	A1	
7(b)	Alternative method 1		
	120-87.5(0) or 32.5(0)	M1	
	No and 152.5(0) ${ }^{\mathbf{1}} 2 \times 32.5(0)$	A1ft	oe ft part (a)
	Alternative method 2		
	$152.5(0) \div 2+87.5(0)$ or 163.75	M1	
	No and 163.75	A1ft	oe ft part (a)

$\mathbf{8}$	$5 \times 7(+) 9 \times-2$ or 35 or 18	M 1	
	17	A 1	

9	$(-2,3)$ and $(2,1)$	B2	B1 $(-2,3)$ or $(2,1)$ or $(-2,3)$ and $(2,1)$ correctly plotted SC1 $(3,-2)$ and $(5,2)$ or $(-5,2)$ and $(-3,6)$

Q	Answer	Mark	Comments

10(a)	(10, 20.8), (20, 21.6), (30, 22.4) and $(40,23.2)$ plotted	B1	
	Straight line through their points	B1ft	ft line of best fit following plotting error
10(b)	[19.9, 20.1]	B1	
10(c)	Alternative method 1		
	21.2 or 22.8	M1	
	1.6	A1ft	ft their graph
	Alternative method 2		
	$(20.8+21.6) \div 2 \text { or } 21.2$ or $(22.4+23.2) \div 2 \text { or } 22.8$	M1	
	1.6	A1	
	Alternative method 3		
	$23.2-21.6$ or $22.4-20.8$ or $21.6-20$ or $(22.4-21.6) \times 2$ or $(23.2-22.4) \times 2$	M1	Finds the difference for any two masses 20 kg apart or Doubles the difference for any two masses 10 kg apart
	1.6	A1	

\mathbf{Q}	Answer	Mark	Comments

11(a)	$6,9,12,15$ or difference of 3 or $3 n$ or $2 n$ seen	M1	
	$(n+) 2 n+3$ or $3 n+3$ or $3(n+1)$ or $3 \times 100+3$	M1dep	oe
	303	A1	
11(b)	$\times 2+3$	B1	

12(a)	$\frac{1}{3.5}$	M1	
	$\frac{2}{7}$	A1	oe fraction
12(b)	Alternative method 1		
	$120000 \times(1+2.5)$	M1	
	420000	A1	
	Alternative method 2		
	$\begin{aligned} & 120000 \div \frac{\text { their } 2}{\text { their } 7} \\ & \text { or } \\ & 120000 \div \frac{\text { their } 1}{\text { their } 3.5} \end{aligned}$	M1	where fraction in (a) is of the form $\frac{m}{n}$ $m>1$ where fraction in (a) is of the form $\frac{1}{n}$
	420000	A1ft	ft their answer from part (a)

\mathbf{Q}	Answer	Mark	Comments

13	0.1×32 or 3.2(0)	M1	oe 0.9×32 or $28.8(0)$ scores M2
	32 - their 3.2(0) or 28.8(0)	M1dep	
	$2000 \div$ their 28.8(0) or 69.(44...)	M1	Condone their 28.8 being 32
	$2000 \div 28.5(0) \text { or } 70 .(17 \ldots)$ or $28.5 \times 70=1995$	M1	
	69 and 70 seen and 70 chosen	A1	

14	$4 x+20=15$ or $x+5=15 \div 4$	M1	oe
	$4 x=15-\text { their } 20$ or $x=15 \div 4-5$	M1	oe
	-1.25	A1ft	oe ft M1M0 or M0M1 with only one error

15	Alternative Method 1		
	$90 \div 40$ or 2.25 or $356 \div 40$ or 8.9	M1	oe
	801	A1	
	Alternative Method 2		
	$40+40+10$ and $356 \div 4$ or 89	M1	Clear build up method
	801	A1	

Q	Answer	Mark	Comments

22	Alternative method 1		
	6.31-3.6(0) or 2.71	M1	
	$\begin{aligned} & \text { their } 2.71 \div 3.6(0)(\times 100) \\ & \text { or } 0.752(7 \ldots) \text { or } 0.753 \end{aligned}$	M1dep	
	75.2(7...) or 75.28 or 75.3	A1	Allow 75 with correct method seen
	Alternative method 2		
	$\begin{aligned} & 6.31 \div 3.6(0)(\times 100) \text { or } \\ & 1.752(7 \ldots) \text { or } 1.753 \text { or } \\ & 175.2(7 \ldots) \text { or } 175.3 \end{aligned}$	M1	
	$\begin{aligned} & 1.752(7 \ldots)-1 \text { or } 1.753-1 \text { or } \\ & 175.2(7 \ldots)-100 \text { or } 175.3-100 \end{aligned}$	M1dep	
	75.2(7...) or 75.28 or 75.3	A1	Allow 75 with correct method seen

23	One continuous arc, centre A, intersecting $A B$ and $A D$ or Two arcs, each with same radius and centre A, intersecting $A B$ and $A D$	M1	Allow $\pm 2 \mathrm{~mm}$ for radii
	Intersecting arcs with same radius and centres at the intersections with $A B$ and $A D$ and angle bisector drawn	A1	Allow $\pm 2 \mathrm{~mm}$ for radii The radius of these arcs need not be the same as those used for M1
Arc of radius [5.8, 6.2] cm, centre C, intersecting their angle bisector and P labelled D	B1ft	SC1 Arc of radius [5.8, 6.2] cm, centre C with no angle bisector attempted	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

24(a)	375.112(1656)	B1	Condone if correctly rounded to 7 significant figures or better eg 375.1122
24(b)	20^{2} or 400 or $\sqrt[3]{1000}$ or 10 or 5	M1	
	$\begin{aligned} & 400-10 \div 5=398 \text { or } \\ & 400-2=398 \end{aligned}$	A1	

25	C and three correct comparable values eg			B3	B2 for two correct conversions to same
				B1 for one correct conversion to	
	12(\%)	12.5(\%)	12.75(\%))		another form
					eg
	0.12	0.125	0.1275		A $\frac{3}{25}$ oe or $12(\%)$ or 0.12
	48	50	51		25
	400	$\overline{400}$	$\overline{400}$		B 1:7 oe or 12.5(\%) or 0.125
	$1 \text { : 7.3.. }$	$1: 7$	$1: 6.8 \ldots$		C $\frac{51}{400}$ oe or $51: 349$ oe or
	(3:22)	3 : 21	3 : 20.5...		0.1275

26	D	B1	

\mathbf{Q}	Answer	Mark	Comments

| 27 | $9+3 x+x-5+2 x$
 or $6 x+4$
 or $3 x+x-5+2 x$
 or $6 x-5$ | M1
 their $(6 x+4)=100$
 or their $6 x-5=91$
 or $6 x=96$ | M1 |
| :---: | :--- | :--- | :--- | | $\frac{9}{\text { their }(6 x+4)}=\frac{9}{100}$ |
| :--- |
| |

28	100(\%) - 14(\%) or 86(\%) or $1-0.14$ or 0.86	M1	Implied by 87 139(.5)
	$101325 \times 0.86{ }^{4}$	A1	$\begin{aligned} & \text { oe } \\ & \text { eg } 101325 \times 0.86 \text { or } 87139(.5) \\ & \text { and their } 87139(.5) \times 0.86 \\ & \text { or } 74939(.97) \\ & \text { and their } 74939(.97) \times 0.86 \\ & \text { or } 64448(.3742) \\ & \text { and their } 64448(.3742) \times 0.86 \end{aligned}$
	55 425(...)	A1	May be implied by 55000 or 55400 or 55430 or 55426
	55000	B1ft	ft their answer rounded to 2 sf

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1

$\angle P C B=180-90-15$ or 75°		
or		
$\angle P C B=90-15$	M 1	oe Angle may be seen on diagram
$\angle A B C=\angle P C B=$ their 75 and $\angle B C D=180-$ their 75 or 105°	M 1	oe Angle may be seen on diagram
$x=105-75=30^{\circ}$	A1	Full method required

Alternative method 2

$\angle P C B=180-90-15 \text { or } 75^{\circ}$ or $\angle P C B=90-15$	M1	oe Angle may be seen on diagram
$\begin{aligned} & \angle A B C=\angle P C B=\text { their } 75 \\ & \text { and } \\ & \angle A B P=\text { their } 75-15 \text { or } 60^{\circ} \\ & \text { and } \\ & \angle B A C=180-90-\text { their } 60 \end{aligned}$	M1	oe Angles may be seen on diagram
$x=\angle B A C=30^{\circ}$	A1	Full method required

Alternative method 3

$\angle P C B=180-90-15 \text { or } 75^{\circ}$ or $\angle P C B=90-15$	M1	oe Angle may be seen on diagram
$\angle A B C=\angle P C B=\text { their } 75$ and $\angle B A C=180-\text { their } 75-\text { their } 75$	M1	oe Angle may be seen on diagram
$x=\angle B A C=30^{\circ}$	A1	Full method required

Copyright © 2015 AQA and its licensors. All rights reserved.
$A Q A$ retainsthe copyright on all itspublications. However, registered schools/collegesfor AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/collegesto photocopy any material that isacknowledged to a third party even for internal use within the centre.

