# GCSE Mathematics 

8300/3H - Paper 3 Higher Tier<br>Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

## Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep $\quad$ A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a,b] Accept values between a and b inclusive.
[a, b) Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

## Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

## Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

## Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

## Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

## Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

## Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

## Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then $M$ marks can be awarded but any incorrect answer or method would result in marks being lost.

## Work not replaced

Erased or crossed out work that is still legible should be marked.

## Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

## Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

## Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| $\mathbf{1}$ | 0.56 |  | B1 |  |
| :--- | :--- | :---: | :--- | :--- |
|  | Additional Guidance |  |  |  |
|  |  |  |  |  |


| $\mathbf{2}$ | $-1,0,1,2,3,4$ | B1 |  |  |
| :--- | :--- | :---: | :--- | :--- |
|  | Additional Guidance |  |  |  |
|  |  |  |  |  |


| 3 | $3.2 \dot{7}$ | B1 |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Additional Guidance |  |  |  |
|  |  |  |  |  |


| 4 | $36^{\circ}$ | B1 |  |
| :--- | :--- | :---: | :--- | :--- |
|  | Additional Guidance |  |  |
|  |  |  |  |


| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |



| Question | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 6 | 54 | B1 | May be on diagram |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 7.5 \\ & 6 \end{aligned}$ | B2 | May be on diagram B1 for 1 correct or for answers transposed |  |
|  | Additional Guidance |  |  |  |
|  | If an diag eg $9 \div 1$ |  | check working and ion errors | $\begin{aligned} & \text { B1 } \\ & \text { B0 } \end{aligned}$ |
|  | Ans $x=8$ | am | $x=54$ on diagram and | B0 |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |



| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 8(a) | Alternative method 1 - Using gradients |  |  |
| :---: | :---: | :---: | :---: |
|  | Gradient of $y=3 x+7$ is 3 <br> and $y=3 x+4$ <br> and <br> gradient of $2 y-6 x=8$ is 3 or $6 \div 2$ | B3 | May come from using points on line eg using ( 0,7 ) and ( 1,10 ) and $\frac{10-7}{1-0}=3$ <br> or correct calculation for gradient from points on line $2 y-6 x=8$ eg using $(0,4)$ and $(1,7)$ and $\frac{7-4}{1-0}=3$ B2 for $y=3 x+4$ and lines have same gradient <br> or $y=3 x+4$ <br> and gradient of $2 y-6 x=8$ is 3 or $6 \div 2$ <br> or gradient of $y=3 x+7$ is 3 and $y=3 x+4$ <br> B1 for gradient of $y=3 x+7$ is 3 or $y=3 x+4$ <br> or gradient of $2 y-6 x=8$ is 3 or $6 \div 2$ |
|  | Alternative method 2 - Using coordinates and distances |  |  |
|  | Chooses a value for $x$ and correctly evaluates the $y$ value for both lines | M1 | eg ( 0,7 ) and ( 0,4 ) |
|  | Chooses a different value for $x$ and correctly evaluates the $y$ value for both lines | M1dep | eg ( 1,10 ) and (1, 7) |
|  | States that $y$ values are a constant distance apart so parallel | A1 | oe |

## Continues on next page

| $\begin{aligned} & 8(a) \\ & \text { cont } \end{aligned}$ | Alternative method 3 - Using simultaneous equations |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $y=3 x+4$ <br> or $y-3 x=4$ <br> or $2 y=6 x+14$ <br> or $2 y-6 x=14$ | M1 | oe <br> Equates coefficients in any form |  |
|  | Any attempt to eliminate both variables from their equations | M1dep |  |  |
|  | States simultaneous equations have no (real) solution and concludes parallel | A1 |  |  |
|  |  | ditional | uidance |  |
|  | To award A mark on Alternative | od 2 , the | working must be seen |  |
|  | $y=3 x+4$ and lines have gradi |  |  | B2 |
|  | $y=3 x+4$ and $3 x$ identified in b | quations |  | B2 |
|  | Both lines have gradient $3 x$ |  |  | B1 |
|  | $y=3 x+7$, gradient 3 and $y=3 x+$ rearrangement) | gradient | (error in | B1 |
|  | $y=3 x+8$, gradient 3 (error in r | gement) |  | B0 |
|  | Parallel as both have same gra |  |  | B0 |
|  | $\begin{aligned} & 2(3 x+7)-6 x=8 \\ & 6 x+14-6 x=8 \\ & 14=8 \end{aligned}$ |  |  | M1 <br> M1 |
|  | $y=3 x+7$ and $y=\frac{8+6 x}{2}$ are Alternative method 3 | d coeffic |  | M1 |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 8(b) | $\begin{aligned} & 3 \times-5+7 \\ & \text { or }-15+7 \\ & \text { or }-8 \\ & \text { or }(-5,-8) \end{aligned}$ <br> or $(-6-7) \div 3$ or $-4.33 \ldots$ <br> or $y=3 x+9$ | M1 | Use a point on $y=3 x+7$ with $(-5,-6)$ to compare gradient to 3 <br> eg Gradient from $(-5,-6)$ to $(0,7)$ is 2.6 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Above and -8 <br> or Above and -4.33 <br> or Above and $y=3 x+9$ | A1 | oe <br> Above and eg Gra $(0,7)$ is 2.6 | $-5,-6 \text { ) to }$ |
|  | Additional Guidance |  |  |  |
|  | Do not ignore incorrect statements eg -6 is less than -8 so above |  |  | M1A0 |
|  | $(0,7),(-1,4),(-2,1),(-3,-2),(-4,-5),(-5,-8)$ and ticks below |  |  | M1A0 |


| 9 | 1.1 seen <br> or $110 \%=19.25$ seen <br> or $19.25 \div 110$ | M1 | oe eg $\begin{aligned} & 10 \%=1.75 \\ & 1 \%=0.175 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $19.25 \div 1.1$ <br> or $0.175 \times 100$ <br> or 17.5 | M1dep | oe |  |
|  | 17.50 | A1 | correct money notation |  |
|  | Additional Guidance |  |  |  |
|  | Condone $£ 17.50$ p |  |  | M1M1A1 |
|  | Answer $£ 17.5$ |  |  | M1M1A0 |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 10 | 55 and 91 | B3 | B2 for (7), 19, 31, 43, 55, 67, 79, 91 <br> or 55 identified with 0 or 1 incorrect answer <br> or 91 identified with 0 or 1 incorrect answer <br> or 55 and 91 identified with 1 incorrect answer <br> B1 at least 2 correct two-digit numbers from the sequence seen |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Additional Guidance |  |  |  |
|  | The correct sequence is (7), 19, 31, 43, 55, 67, 79, 91 Ignore continuation of sequence beyond 91 |  |  |  |
|  | Ignore further working unless contradictory |  |  |  |
|  | 55 and 91 identified and $5^{\text {th }}$ and $8^{\text {th }}$ terms stated (ignore fw) |  |  | B3 |
|  | 55 and 91 identified and answer 2 (or there are 2) (ignore fw) |  |  | B3 |
|  | 55 identified and $5^{\text {th }}$ stated (ignore fw) |  |  | B2 |
|  | Condone 5 or $5^{\text {th }}$ as final answer provided there is a clear link to 55 eg $12 \times 5=60-5=5555 \div 11=55$ on answer line |  |  | B2 |
|  | Condone 8 or $8^{\text {th }}$ as final answer provided there is a clear link to 91 eg $12 \times 8=96-5=918$ on answer line |  |  | B2 |


| 11(a) | $\left.\begin{array}{c}1 \\ (1) \\ -1\end{array}\right)$ | B2 | B1 for 1 correct value in correct position <br> Condone a divisor line |  |
| :--- | :--- | :---: | :--- | :--- |
|  | Additional Guidance |  |  |  |
|  |  |  |  |  |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |



| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| $\mathbf{1 2}$ | 12.5 or $12 \frac{1}{2}$ or $\frac{25}{2}$ | B1 |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{N} / \mathrm{m}^{2}$ or newtons per square metre <br> or $\mathrm{Nm}^{-2}$ or pascals or Pa | B1 | oe |  |
|  | Additional Guidance |  |  |  |
|  | $\mathrm{m}^{2} / \mathrm{N}$ or P | BO |  |  |



| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |



| Question | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 15 | $4(x+3)$ | B1 |  |
|  | Additional Guidance |  |  |


| 16 | $\left(-\frac{3}{4}, 3\right)$ <br> Additional Guidance |  |  |
| :--- | :--- | :--- | :--- |
|  | B1 |  |  |



| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |



## Continues on next page

| $\begin{gathered} 18 \\ \text { cont } \end{gathered}$ | Alternative method 2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\frac{2(x+4)}{6 x} \text { or }(-) \frac{15}{6 x}$ <br> or $\frac{2 x+8}{6 x}$ or $(-) \frac{15}{6 x}$ <br> or $\frac{2 x(x+4)}{6 x^{2}}$ or $(-) \frac{15 x}{6 x^{2}}$ <br> or $\frac{2 x^{2}+8 x}{6 x^{2}}$ or $(-) \frac{15 x}{6 x^{2}}$ | M1 | oe <br> A correct fraction using a common denominator for one of the given fractions Accept for this mark only <br> eg 2(3x) for $6 x$ <br> 3(5) for 15 $(2 x)(3 x) \text { for } 6 x^{2}$ <br> First fraction can be written as separate <br> fractions eg $\frac{2 x}{2(3 x)}+\frac{8}{2(3 x)}$ |  |
|  | $\frac{2 x+8-15}{6 x}$ <br> or $\frac{2 x-7}{6 x}$ <br> or $\frac{2 k x-7 k}{6 k x}$, <br> where k is a constant value | A1 | Allow one error in numerator Accept eg $\frac{2 x+-7}{6 x}$ <br> Must be $6 x$ or a multiple of $6 x$ |  |
|  | $\frac{2 x-7}{6 x}$ <br> or $\frac{2 \mathrm{k} x-7 \mathrm{k}}{6 \mathrm{k} x}$, <br> where $k$ is a constant value | A1 | Accept eg $\frac{2 x+-7}{6 x}$ <br> Do not ignore further wo |  |
|  | Additional Guidance |  |  |  |
|  | Use the method that gives the greater mark |  |  |  |
|  | $\frac{2 x^{2}-7 x}{6 x^{2}}$ |  |  | M1A1 |
|  | $\frac{2 x-7}{6 x}=\frac{-5}{6 x}$ |  |  | M1A1A0 |
|  | $\frac{15 x}{6 x^{2}}-\frac{2 x^{2}+8 x}{6 x^{2}}$ (order of fractions reversed) |  |  | M1A0A0 |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 19 | $(8,0)$ | B1 |  |
| :--- | :--- | :---: | :--- | :--- |
|  | Additional Guidance |  |  |
|  |  |  |  |


| 20 | $\begin{aligned} & x^{2}+(7 x)^{2}=(10 y)^{2} \\ & \text { or } x^{2}+49 x^{2}=100 y^{2} \end{aligned}$ | M1 | oe |
| :---: | :---: | :---: | :---: |
|  | $50 x^{2}=100 y^{2}$ <br> or 1.41(...) | A1 | oe equation with terms collected eg $\frac{x^{2}}{y^{2}}=\frac{100}{50}$ or $x^{2}=2 y^{2}$ or $x=1.41 y$ |
|  | $\sqrt{2}$ or $\frac{2}{\sqrt{2}}$ | A1 | Do not accept further working |
|  | Additional Guidance |  |  |
|  | $x^{2}+7 x^{2}=10 y^{2}$ |  | M0 |
|  | $\sqrt{2}=1.41$ |  | M1A1A0 |
|  | $\begin{aligned} & x^{2}+(7 x)^{2}=(10 y)^{2} \\ & x^{2}+14 x^{2}=20 y^{2} \end{aligned}$ |  | $\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$ |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 21(a) | $m a h^{3}$ <br> or $m=\mathrm{k} \times h^{3}$ <br> or $1600=\mathrm{k} \times 8^{3}$ <br> or $\mathrm{c} \times m=h^{3}$ <br> or $\mathrm{c} \times 1600=8^{3}$ | M1 | oe eg $h=\mathrm{km}{ }^{1 / 3}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $(k=) 1600 \div 8^{3} \text { or } 3.125$ <br> or ( $\mathrm{c}=$ ) $8^{3} \div 1600$ or 0.32 | M1dep | $\begin{aligned} & \text { oe eg } \frac{1600}{512} \text { or } \frac{25}{8} \\ & \frac{512}{1600} \text { or } \frac{8}{25} \end{aligned}$ |  |
|  | $m=3.125 \times h^{3}$ <br> or $0.32 \times m=h^{3}$ | A1 | oe equation |  |
|  | Additional Guidance |  |  |  |
|  | $m \propto 3.125 \times h^{3}$ or $0.32 m \alpha h^{3}$ |  |  | M1M1A0 |
|  | ( $k=$ ) 3.125 or $(c=) 0.32$ |  |  | M1M1 |
|  | $3.125 h^{3}$ or $0.32 h^{3}$ |  |  | M1M1 |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 21(b) | their $3.125 \times 12^{3}$ <br> their $3.125 \times 1728$ or $1600 \times\left(q_{8}^{12}\right)^{3}$ <br> or $12^{3} \div$ their 0.32 <br> or $1728 \div 0.32$ <br> or $1600 \div\left(\frac{8}{12}\right)^{3}$ | M1 | oe |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 5400 | A1ft | oe <br> ft their 3.125 provided using $m=$ their $3.125 \times h^{3}$ |  |
|  | Additional Guidance |  |  |  |
|  | Must use $\times 12^{3}$ or $\times 1728$ or $\times\left(\frac{12}{8}\right)^{3}$ for M1 |  |  |  |
|  | If in part (a) $\begin{aligned} & m=k \times h \\ & 1600=k \times 8 \\ & m=200 h \end{aligned}$ <br> and in part (b) $m=200 \times 12, m=2400$ |  |  | MO part (a) <br> MO part (b) |
|  | If in part (a) $\begin{aligned} & m=k \times h \\ & 1600=k \times 8 \\ & m=200 h \end{aligned}$ <br> and in part (b) $m=200 \times 12^{3}, m=345600$ |  |  | MO part (a) <br> M1A1ft part (b) |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 22 | Alternate segment <br> or Reason on first line of working is incorrect | B1 | oe <br> Any incorrect statem |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Additional Guidance |  |  |  |
|  | Incorrect theorem stated in first line |  |  | B1 |
|  | First line is incorrect. It should say alt segment |  |  | B1 |
|  | Angles not in same segment |  |  | B1 |
|  | Angles in same segment are not equal |  |  | B0 |
|  | Opposite segments (are not equal) |  |  | B0 |
|  | First line is incorrect. It should say opposite segment |  |  | B0 |
|  | The angle between the chord and the tangent is equal to the angle in the opposite segment |  |  | B0 |
|  | Angle $A C B$ is not in the same segment, it is alternate |  |  | B0 |
|  | Angles are not in the same segment, they are alternate |  |  | B0 |


| 23 | $\begin{aligned} & u_{2}=0.6 \text { or } \frac{3}{5} \\ & u_{3}=1.875 \text { or } \frac{15}{8} \end{aligned}$ | B2 | oe <br> B1 for 1 correct <br> or for $u_{2}$ incorrect but their value of $u_{3}$ correctly follows through rounded or truncated to 4 dp |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Additional Guidance |  |  |  |
|  | $u_{1}=0.6, u_{2}=1.875, u_{3}=1.0434 \ldots$ or $u_{3}=1.0435$ |  |  |  |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |



| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


|  | It works out an <br> overestimate <br> of the distance |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 24(b) | It works out an <br> underestimate <br> of the distance |  |  |  |
|  | It could be an <br> overestimate <br> or an underestimate of the <br> distance | B1 |  |  |
| Additional Guidance |  |  |  |  |


| 25(a) | $\tan 6=\frac{C D}{500}$ <br> or $500 \times \tan 6$ | M1 | oe any letter $\frac{C D}{\sin 6}=\frac{500}{\sin 84}$ |
| :---: | :---: | :---: | :---: |
|  | [52.5, 52.6] or 53 | A1 | May be on diagr |
|  | Additional Guidance |  |  |
|  | Check diagram for angle |  |  |


| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 25(b) | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | $500^{2}+400^{2}$ or $250000+160000$ or 410000 | M1 | oe |
|  | $\sqrt{\text { their } 410000}$ or $\sqrt{500^{2}+400^{2}}$ or 640.(3...) | M1dep | $A C$ |
|  | $\tan x=\frac{[52.5,52.6] \text { or } 53}{\text { their } 640 .(3 . .)}$ | M1dep | oe any letter |
|  | [4.6, 4.75] from correct working | A1 | accept 5 with correct working seen |
|  | Alternative method 2 |  |  |
|  | $\frac{500}{\cos 6}$ or [502.7, 502.8] | M1 | $\begin{aligned} & \text { oe } \\ & B D \end{aligned}$ |
|  | $\begin{aligned} & \sqrt{\left(\frac{500}{\cos 6}\right)^{2}+400^{2}} \\ & \text { or }[642.4,642.5] \end{aligned}$ | M1dep | $A D$ |
|  | $\sin x=\frac{[52.5,52.6] \text { or } 53}{\text { their }[642.4,642.5]}$ | M1dep | oe <br> any letter |
|  | [4.6, 4.75] from correct working | A1 | accept 5 with correct working seen |

## Continues on next page

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{8}{*}{\[
\begin{aligned}
\& \text { 25(b) } \\
\& \text { cont }
\end{aligned}
\]} \& \multicolumn{4}{|l|}{Alternative method 3} \\
\hline \& \begin{tabular}{l}
\(500^{2}+400^{2}\) or \(250000+160000\) \\
or 410000 \\
or \(\frac{500}{\cos 6}\) \\
or [502.7, 502.8]
\end{tabular} \& M1 \& \multicolumn{2}{|l|}{oe} \\
\hline \& ```
\(\sqrt{\text { their } 410000}\) or \(\sqrt{500^{2}+400^{2}}\)
or 640.(3...)
or \(\sqrt{\left(\frac{500}{\cos 6)}\right)^{2}+400^{2}}\)
or [642.4, 642.5]
``` \& M1dep \& \multicolumn{2}{|l|}{\(A C\)

$A D$} <br>

\hline \& $$
\cos x=\frac{\text { their 640.(3...) }}{\text { their }[642.4,642.5]}
$$ \& M1dep \& \multicolumn{2}{|l|}{oe any letter} <br>

\hline \& [4.6, 4.75] from correct working \& A1 \& \multicolumn{2}{|l|}{accept 5 with correct working seen} <br>
\hline \& \multicolumn{4}{|c|}{Additional Guidance} <br>
\hline \& \multicolumn{4}{|l|}{Check diagram for lengths} <br>

\hline \& \multicolumn{2}{|l|}{$$
\text { Beware } \sin x=\frac{52.6}{640 .(3 \ldots .)} \text { leads to }[4.6,4.75]
$$} \& \& M1M1M0A0 <br>

\hline
\end{tabular}

| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 26(a) | Alternative method 1 - Counting squares |  |  |
| :---: | :---: | :---: | :---: |
|  | 15 or 6.6 or 2.4 (cm squares) | M1 | 375 or 165 or 60 (small squares) |
|  | their $15+$ their $6.6+$ their 2.4 or 24 (total cm squares) | M1dep | allow one error their 375 + their $165+$ their 60 or 600 (total small squares) |
|  | $\frac{\text { their } 15}{\text { their } 24}$ or $\frac{\text { their } 375}{\text { their } 600}$ or 0.625 <br> or $\frac{480}{\text { their } 600}$ or 0.8 <br> (cars per small square) <br> or $\frac{480}{\text { their } 24}$ or 20 <br> (cars per cm square) | M1dep | oe $\frac{\text { their } 600}{480} \text { or } 1.25$ <br> (small squares per car) $\frac{\text { their } 24}{480} \text { or } 0.05$ <br> (cm square per car) |
|  | 300 | A1 |  |
|  | Alternative method 2 - Using f.d. | ale of $x$ p | unit |
|  | $5 x \times 15$ or $75 x$ <br> or $6.6 x \times 5$ or $33 x$ <br> or $0.8 x \times 15$ or $12 x$ <br> ( $x$ per cm) | M1 | $25 x \times 15$ or $375 x$ or $33 x \times 5$ or $165 x$ or $4 x \times 15$ or $60 x$ ( $x$ per small square) |
|  | $5 x \times 15+6.6 x \times 5+0.8 x \times 15$ <br> or $75 x+33 x+12 x$ <br> or 120x <br> ( $x$ per cm) | M1dep | allow one error $\begin{aligned} & 25 x \times 15+33 x \times 5+4 x \times 15 \\ & \text { or } 375 x+165 x+60 x \\ & \text { or } 600 x \\ & \text { ( } x \text { per small square) } \end{aligned}$ |
|  | their $120 x=480$ or $x=4$ | M1dep | $\text { oe } \frac{480}{\text { their } 120} \text { or } 4$ |
|  | 300 | A1 |  |

## Continues on next page



| Question | Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 26(b) | $\begin{aligned} & \frac{2}{3} \times 2.4 \text { or } 1.6 \\ & \text { or } \frac{2}{3} \times 60 \text { or } 40 \\ & \text { or } \frac{2}{3} \times 48 \\ & \text { or } 10 \times 0.8 \times 4 \end{aligned}$ | M1 | oe |
| :---: | :---: | :---: | :---: |
|  | 32 | A1 |  |
|  | Additional Guidance |  |  |


| 27 | $\frac{10}{30}$ and $\frac{9}{31}$ seen <br> or $\frac{1}{3}$ and $\frac{9}{31}$ seen | M1 | oe accept 0.33... and 0.29... |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \frac{10}{30} \times \frac{9}{31} \times \frac{8}{32} \\ & \text { or } \frac{1}{3} \times \frac{9}{31} \times \frac{1}{4} \end{aligned}$ | M1dep | oe <br> accept $0.33 \ldots$ and $0.29 \ldots$ and 0.25 |  |
|  | $\frac{3}{124} \text { or }[0.0239,0.0242]$ | A1 | $\text { oe eg } \frac{720}{29760}$ |  |
|  | Additional Guidance |  |  |  |
|  | Fractions do not have to be in simplest form |  |  |  |
|  | $\frac{10}{30} \times \frac{9}{31} \times \frac{8}{32} \times \frac{7}{33}$ |  |  | M1M0 |
|  | $\frac{10}{30}+\frac{9}{31}+\frac{8}{32}$ |  |  | M1M0 |



