GCSE

MATHEMATICS

8300/3H

Higher Tier Paper 3 Calculator

Mark scheme

June 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a,b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments		
1 $\frac{5}{2}$ B1					
:---:					

$\mathbf{2}$	$\frac{9}{25}$	B1	

$\mathbf{3}$	75	B1	

$\mathbf{4}$	-3 and 5	B1	

5	Isosceles triangle with base 2 cm and height 3 cm in any orientation	B2	$\pm 1 / 4$ square on base B1 isosceles triangle with height 3 cm in any or or acute angled triangle height 3 cm in any or	
	Additional Guidance			
	Mark intention for isosceles triangle within tolerance, lines do not need to be ruled			
	Enlargement can be drawn wholly or partially inside the original			
	Correct vertices not connected			B1
	Right angled isosceles triangle			B0

Question	Answer	Mark	Comments

6	$8.5(0)$ or 9.49 or $9.5(0)$ or 6.25 or 6.74 or 6.75	B1		
	$9.49+6.74$ or $(9,9.5]+(6.5,6.75]$	M1		
	16.23	A1	accept (£) 16.23 p SC2 16.25 or 16.24	
	Additional Guidance			
	9.5(0) and 6.55 with answer 16.05			B1M1A0
	$9.4(0)$ and 6.25 with answer 15.65			B1M0A0
	9.4(0) and 6.55 with answer 15.95			B0M1A0

7	6 as density for J or K	B1		
	13 as volume for K or $78 \div$ their 6 as volume for K	B1ft	ft their 6	
	$\mathrm{g} / \mathrm{cm}^{3}$ as units for densities of J and K and cm^{3} as unit for volume of K	B1	allow $\mathrm{g} \mathrm{cm}^{-3}$	
	Additional Guidance			
	Mark table first			
	Full marks are only awarded for a full omissions		le with no errors or	
	$13 \mathrm{~cm}^{3}$ as a volume for $\mathrm{K}, 0.006 \mathrm{~kg} / \mathrm{c}$	for b	densities	B1B1B1
	Condone g per $\mathrm{cm}^{3}, \mathrm{gpcm}^{3}$ or g per density		etre as units for	

Question	Answer	Mark	Comments

$8 \quad x=\frac{y+2}{3}$ B1

Question	Answer	Mark	Comments

Mark scheme for Question 9 continues on next page

Question	Answer	Mark	Comments

9 cont	Alternative method 4 - trial and improvement with addition of three lengths		
	A correctly evaluated trial with a difference of $10(\mathrm{~km})$ between the two shorter lengths and the longest length twice the length of the middle length	M1	may be seen as a subtraction of three numbers from 170
	A different correctly evaluated trial with a difference of $10(\mathrm{~km})$ between the two shorter lengths and the longest length twice the length of the middle length	M1dep	may be seen as a subtraction of three numbers from 170
	35,45 and 90	A1	
	35	A1	
	Alternative method 5-trial and improvement with subtraction from 170		
	A correctly evaluated trial of two lengths subtracted from 170 with a difference of $10(\mathrm{~km})$ between the two lengths or one length twice the length of the other	M1	
	A different correctly evaluated trial of two lengths subtracted from 170 with a difference of $10(\mathrm{~km})$ between the two lengths or one length twice the length of the other	M1dep	
	35, 45 and 90	A1	
	35	A1	

Additional Guidance is on the next page

9 cont	Additional Guidance	
	If the student attempts more than one method, mark each method and award the highest mark	
	Alt $1 P Q+P Q+10+2(P Q+10)=170$	M1M1
	Alt $1 P Q+P Q+10+2 P R=170$	M1
	Alt $2 x, x+10$ and $2 x$ seen on diagram, $4 \mathrm{x}+10=170$	M1M1M0A0
	Alt $435+45+90$ with no choice made	M1M1A1A0
	Alt $4170-30-40-80=20$	M1
	Alt $4170-30-40-60=40$ incorrect number is doubled	M0
	Alt $5170-30-60=80$	M1

Question	Answer	Mark	Comments

10	Alternative method 1		
	6000×1.03 or 6180 or 6000×0.03 or 180 or 6000×1.01 or 6060 or 6000×0.01 or 60	M1	$\begin{aligned} & 6000 \times 1.05 \text { or } 6300 \\ & 6000 \times 0.05 \text { or } 300 \end{aligned}$
	their 6180×1.03 or $6365.4(0)$ or their 6180×0.03 or $185.4(0)$ or 365.4(0) or their 6060×1.05 or 6363 or their 6060×0.05 or 303 or 363	M1dep	$\begin{aligned} & 6000 \times 1.03^{2} \\ & \text { or } 6000 \times 1.0609 \\ & \text { or } 6000 \times 1.01 \times 1.05 \\ & \text { or } 6000 \times 1.0605 \\ & \text { or } 6300 \times 1.01 \\ & \text { or } 6300 \times 0.01 \text { or } 63 \end{aligned}$
	6365.4(0) and 6363 and No or 365.4(0) and 363 and No	A1	accept 2.4(0) difference to imply 'No'
	Alternative method 2		
	1.03 or 1.01 or 1.05	M1	
	```1.03 }\mp@subsup{}{}{2}\mathrm{ or 1.03 }\times1.03\mathrm{ or 1.0609 or 0.0609 or 6.09(%) or 1.01 * 1.05 or 1.0605 or 0.0605 or 6.05(%)```	M1dep	
	1.0609 and 1.0605 and No or 0.0609 and 0.0605 and No or 6.09(\%) and 6.05(\%) and No	A1	accept 0.0004 difference to imply ' No '   accept 0.04(\%) difference to imply 'No'

Additional Guidance is on the next page

10 cont	Additional Guidance	
	Accept any clear indication that the Offer 1 amount is different to the Offer 2 amount for 'No'	
	If build up methods are used they must be complete	
	$6000 \times 0.03^{2}$ implies $6000 \times 0.03$	M1
	$1.03{ }^{3}$ implies 1.03	M1
	360 without 180 seen (simple interest)	M0
	If a different starting value is used, apply Alt 2 with correctly evaluated answers eg $\begin{aligned} & 600 \times 1.03^{2}=636.54 \\ & 600 \times 1.01 \times 1.05=636.30 \end{aligned}$   No, pay less with Offer 1 (condone incorrect choice of Offer 1)	M1M1A1
	$\begin{array}{ll} 500 \times 1.03=515 & 515 \times 1.03=530.45 \\ 500 \times 1.01=505 & 505 \times 1.05=530.25 \end{array}$   No, they are different	M1M1A1



Question	Answer	Mark	Comments

## Alternative method 1

$4 \times 5+c=23$	M 1	oe $20+c=23$
$c=3$	A1	implied by $(0,3)$   or 3 shown as $y$-axis intercept
$y=4 x+3$	A1	SC1 $y=4 x+c \quad c \neq 3$

## Alternative method 2

$y-23=4(x-5)$	M1	oe	
$y-23=4 x-20$	M1dep		
$y=4 x+3$	A1	SC1 $y=4 x+c \quad c \neq 3$	
Additional Guidance			
If 3 is clearly linked to $c$ in $y=m x+c$ condone M1A1			
$4 x+3$ on answer line, $y=4 x+3$ seen in working	M1A1A1		
$4 x+3$ on answer line, $y=4 x+3$ not seen in working	M1A1A0		
$m=4, c=3$ on answer line, $y=4 x+3$ seen in working	M1A1A1		
$m=4, c=3$	M1A1A0		
$y=m x+3$	M1A1A0		
$23=4 \times 5+3$ m1A0A0			
$4 x+c$ on answer line with $c \neq 3$	M0A0A0		


Question	Answer	Mark	Comments	
	-2a	B1	oe eg -a-a or $2(-\mathbf{a})$	
		tional	idance	
	Do not accept in colum	less co	ct answer is also seen	
	Do not accept -a2 for			


13(b)	$\binom{-8}{2}$ drawn on the grid with direction shown	B2	$\pm 1 / 4$ centimetre square B1 $\binom{-8}{2}$ seen in work or correct line drawn with or no direction shown or correctly joined vector correct directions show
	Additional Guidance		
	Mark intention, line does not need to be ruled and ignore all labelling for $\mathbf{c}, \mathbf{d}$ and $\mathbf{c}-\mathbf{d}$		


14	Class $X$ has a greater proportion of   boys than class $Y$	B1	


Question	Answer	Mark	Comments




Question	Answer	Mark	Comments


17	Alternative method 1		
	$0.03 \times 200$ or 6   or   $0.035 \times 200$ or 7   or   $0.015 \times 200$ or 3   or $0.01 \times 200 \text { or } 2$		
	$\begin{aligned} & 0.035 \times 200 \text { or } 7 \\ & \text { and } \\ & 0.01 \times 200 \text { or } 2 \end{aligned}$	M1dep	
	5	A1	
	Alternative method 2		
	0.035-0.01 or 0.025	M1	
	their $0.025 \times 200$	M1dep	
	5	A1	
	Additional Guidance		
	Condone errors in calculating 6 or 3 as only the values 7 and 2 are required to correctly answer the question   eg $5,7,3,2$ the range is $7-2=5$		M1M1A1
	5 on answer line does not imply full marks, method must be checked eg $0.03 \times 200=8 \quad 8-3=5$		M1M0A0


18(a)	$\begin{aligned} & 3 x^{2}-9 x-4=0 \\ & \text { or }-3 x^{2}+9 x+4=0 \end{aligned}$	B1	must se	
	Additional Guidance			
	Do not accept $x 9$ or $9 \times x$ for $9 x$			
	$3 x^{2}+-9 x+-4=0$			B1
	$3 x^{2}-+9 x-+4=0$			B0


Question	Answer	Mark	Comments



Question	Answer	Mark	Comments



Question	Answer	Mark	Comments


20(a)	$d \alpha v^{2}$   or $d=\mathrm{k} \times v^{2}$   or $6=\mathrm{k} \times 20^{2}$   or $\mathrm{c} \times d=v^{2}$   or $\mathrm{c} \times 6=20^{2}$	M1	$\text { oe eg } v=k d^{1 / 2}$	
	$(k=) 6 \div 20^{2} \text { or } 0.015$   or $(c=) 20^{2} \div 6$ or $66.66 \ldots$ or 66.67	M1dep	$\begin{aligned} & \text { oe eg } \frac{6}{400} \text { or } \frac{3}{200} \\ & \frac{400}{6} \text { or } \frac{200}{3} \end{aligned}$	
	$d=0.015 \times v^{2}$   or $\frac{200}{3} \times d=v^{2}$	A1	oe equation	
	Additional Guidance			
	Working for second M mark must follow from their initial equation			
	$d \alpha 0.015 \times v^{2}$			M1M1A0
	( $k=$ ) 0.015 or ( $c=)^{\frac{200}{3}}$ with no incorrect working			M1M1A0
	$0.015 v^{2} \text { or } \frac{200}{3} d$			M1M1A0


Question	Answer	Mark	Comments



Question	Answer	Mark	Comments



Mark scheme for Question 21 continues on next page

21 cont	Alternative method 3 - making 10 litres of paint when profit is added at the start			
	$225 \times 1.4(=315)$   and $80 \times 1.4(=112)$	M1	40\% added to the cost of both colours	
	their $315 \div 50(=6.3(0))$   or   their $112 \div 20(=5.6(0))$	M1dep	selling price of 1 litre of either colour	
	their $315 \div 50(=6.3(0))$   and   their $112 \div 20(=5.6(0))$	M1dep	selling price of 1 litre of both colours	
	their $6.3(0) \times 7+$ their $5.6(0) \times 3$ or 60.9(0)	M1dep	$\begin{aligned} & \text { oe } 44.1(0)+16.8(0) \\ & \text { dep on } M 3 \end{aligned}$	
	30.45	A1		
	Alternative method 4 - making $\boldsymbol{n}$ litres of paint			
	$225 \div 50 \times 0.7 n \text { or } 3.15 n$   or $80 \div 20 \times 0.3 n \text { or } 1.2 n$	M1	cost of blue or yellow paint in $n$ litres of green paint	
	$225 \div 50 \times 0.7 n \text { or } 3.15 n$   and $80 \div 20 \times 0.3 n \text { or } 1.2 n$	M1	cost of blue and yellow paint in $n$ litres of green paint	
	their $3.15 n+$ their $1.2 n$ or $4.35 n$	M1dep	total cost of $n$ litres of green paint dep on M2	
	their $4.35 n \times 1.4$ or $6.09 n$	M1dep	oe dep on M3	
	30.45	A1		
	Additional Guidance			
	If the student attempts more than one method, mark each method and award the highest mark			
	Alt 4 value of $n$ must be clear eg 100 litres total or 700:300 (1000 litres implied)			
	Alt 4 their $4.35 n \div \mathrm{k} \times 1.4$ implies their $4.35 n \times 1.4$ where $\div \mathrm{k}$ is their attempt to scale to the cost of a 5 -litre tin			M1M1M1M1


Question
22(a) $\frac{12}{29}$ Mark Comments


22(b)	$\frac{8}{15}$	B1	


23	Correct curve	B2	B2 correct curve must be correct shape and pass through $(0,1)$ and be in correct position relative to $y={ }^{x}$   B1 correct shape and pass through $(0,1)$		
	Additional Guidance				
	Correct curve must be an exponential graph				
	Correct position must be above $y={ }^{x}$ for $x>0$ below $y={ }_{2}^{2}$ for $x<0$				


24	$\sin 24=\frac{h}{20}$	M1	oe$\begin{aligned} & \cos 66=\frac{h}{20} \\ & \frac{20}{90}=\frac{h}{\sin 24} \sin \end{aligned}$	
	$20 \times \sin 24$ or $8.1 \ldots$	M1dep	$\begin{aligned} & 20 \times \cos 66 \\ & \frac{20}{\sin 90} \times \sin 24 \end{aligned}$	
	[1215, 1221]	A1	with no incorrect	
	Additional Guidance			
	$150 \times 20 \times \sin 24$			M1M1


Question	Answer	Mark	Comments


	Reflection	B 1	
	$y=1$   25 $A C$	B 1	
	Additional Guidance		
	Mirror line	B0	
	Contradiction for line of reflection	B0	
	More than one transformation given		


25(b)	Alternative method 1			
	Rotation	B1		
	Centre (0, 1)	B1		
	$180^{\circ}$	B1	degrees symbo seen	to be
	Alternative method 2			
	Enlargement	B1		
	Centre (0, 1)	B1		
	Scale factor -1	B1		
	Additional Guidance			
	For centre ( 0,1 ) allow about (0, 1) or (0, 1)			B1
	For centre (0, 1) do not allow 0, 1			B0
	More than one transformation given eg rotation then translation			B0
	Do not allow half turn for $180^{\circ}$			
	Ignore clockwise or anticlockwise			
	For scale factor allow sf or scale or (x) -1			


Question	Answer	Mark	Comments



Question	Answer	Mark	Comments



Question	Answer	Mark	Comments
28(a)	$\frac{1}{2} \times 5 \times 8$ or 20   or   $\frac{1}{2} \times(8+9) \times(9-5)$ or 34	M1	oe eg $\frac{1}{2} \times 4(\times 1)$ and $4 \times 8$ or 2 and 32
	$\frac{1}{2} \times 5 \times 8 \text { or } 20$   and $\stackrel{1}{ } \times(8+9) \times(9-5)$ or 34 2	M1dep	$\frac{1}{2} \times 4(\times 1)$ and $4 \times 8$ or 2 and 32
	$\begin{aligned} & \frac{1}{2} \times(y+4.0) \times 1 \\ & +\frac{1}{2} \times(4.0+z) \times 1 \\ & +\frac{1}{2} \times 1 \times z \end{aligned}$   or $6.8+3.3+1$ or 11.1   or $\frac{1}{2} \times(y+4.0) \times 1+\frac{1}{2} \times<\times 4.0$   or $6.8+4.6$ or 11.4   or $\frac{1}{2} \times(y+z) \times z+\frac{1}{2} \times 1 \times z$   or $11+1$ or 12   or $\frac{1}{2} \times 3 \times y \text { or } 13.5$	M1	correct attempt to estimate the full area below curve using trapezia, a trapezium and a triangle or a triangle
	Correctly evaluates $20+34+$ their correct estimate for the full area below curve, which must sum to an answer which is less than or equal to 67.5	A1	M3 must be awarded

## Additional Guidance is on the next page

| 28(a) <br> cont | If first two marks are awarded, the third area must not come from 67.5 <br> minus their two areas |  |
| :---: | :--- | :--- | :--- |
|  | If a concluding statement is made do not award A mark if it contains an <br> error |  |



