

GCSE MATHEMATICS 8300/3H

Higher Tier Paper 3 Calculator

Mark scheme

June 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2019 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
М dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Commer	nts
1	5 2	B1		
2	9 25	B1		
3	75	B1		
4	–3 and 5	B1		
	Isosceles triangle with base 2 cm and height 3 cm in any orientation	B2	± ¼ square on base or h B1 isosceles triangle with ba height 3 cm in any orient or acute angled triangle wit height 3 cm in any orient	ase 2 cm or tation h base 2 cm and
5	5 Additiona Mark intention for isosceles triangle within to to be ruled			
	Enlargement can be drawn wholly or partially inside the original			
	Correct vertices not connected			B1

Right angled isosceles triangle

B0

Question	Answer	Mark	Comments	
		- I [
	8.5(0) or 9.49 or 9.5(0)			
	or	B1		
	6.25 or 6.74 or 6.75			
	9.49 + 6.74	M1		
	or			
	(9, 9.5] + (6.5, 6.75]			
6	40.00		accept (£)16.23p	
	16.23	A1	SC2 16.25 or 16.24	
	Ade			
	9.5(0) and 6.55 with answer 16.05			B1M1A0
	9.4(0) and 6.25 with answer 15.65			B1M0A0
	9.4(0) and 6.55 with answer 15.95			B0M1A0

	6 as density for J or K	B1		
7	13 as volume for K or 78 ÷ their 6 as volume for K	B1ft	ft their 6	
	g/cm ³ as units for densities of J and K and cm ³ as unit for volume of K	B1	allow g cm ⁻³	
	Additional Guidance			
	Mark table first			
	Full marks are only awarded for a fully omissions			
	13 cm ³ as a volume for K, 0.006 kg/cm ³ for both densities			B1B1B1
	Condone g per cm ³ , gpcm ³ or g per cubic centimetre as units for density			

Question	Answer	Mark	Comments
8	$x = \frac{y+2}{3}$	B1	

Question	Answer	Mark	Comments	
	Alternative method 1 – PQ as the unknown			
	x + 10 or 2(x + 10)	M1	any unknown	
	x + x + 10 + 2(x + 10) = 170	M1dep	oe any consistent unknown x + their two expressions (with at least one correct) = 170	
	4x + 30 = 170	M1dep	oe $4x = 140$ must be correct	
	35	A1		
-	Alternative method 2 – PR as the	e unknown		
	x - 10 or 2x	M1	any unknown	
9	x + x - 10 + 2x = 170	M1dep	oe any consistent unknown x + their two expressions (with at least one correct) = 170	
	4x - 10 = 170 or $x = 45$	M1dep	oe $4x = 180$ must be correct	
	35	A1		
	Alternative method 3 – QR as the unknown			
	$\frac{x}{2}$ or $\frac{x}{2}$ - 10 2 2	M1	any unknown	
	$x + \frac{x}{2} + \frac{x}{2} - 10 = 170$	M1dep	oe any consistent unknown x + their two expressions (with at least one correct) = 170	
	2x - 10 = 170 or $x = 90$	M1dep	oe $2x = 180$ must be correct	
	35	A1		

Mark scheme for Question 9 continues on next page

Question	Answer	Mark	Comments	
	Alternative method 4 – trial and improvement with addition of three lengths			
	A correctly evaluated trial with a difference of 10 (km) between the two shorter lengths and the longest length twice the length of the middle length	M1	may be seen as a subtraction of three numbers from 170	
	A different correctly evaluated trial with a difference of 10 (km) between the two shorter lengths and the longest length twice the length of the middle length	M1dep	may be seen as a subtraction of three numbers from 170	
	35, 45 and 90	A1		
	35	A1		
9 cont	Alternative method 5 – trial and improvement with subtraction from 170			
	A correctly evaluated trial of two lengths subtracted from 170 with a difference of 10 (km) between the two lengths or one length twice the length of the other	M1		
	A different correctly evaluated trial of two lengths subtracted from 170 with a difference of 10 (km) between the two lengths or one length twice the length of the	M1dep		
	other	Δ1		
	35, 45 and 90 35	A1 A1		

Additional Guidance is on the next page

	Additional Guidance				
	If the student attempts more than one method, mark each method and award the highest mark				
	Alt 1 $PQ + PQ + 10 + 2(PQ + 10) = 170$	M1M1			
	Alt 1 PQ + PQ + 10 + 2PR = 170	M1			
9 cont	Alt 2 x, $x + 10$ and 2x seen on diagram, $4x + 10 = 170$	M1M1M0A0			
	Alt 4 35 + 45 + 90 with no choice made	M1M1A1A0			
	Alt 4 $170 - 30 - 40 - 80 = 20$	M1			
	Alt 4 $170 - 30 - 40 - 60 = 40$ incorrect number is doubled	MO			
	Alt 5 $170 - 30 - 60 = 80$	M1			

Question	Answer	Mark	Comments	
	Alternative method 1			
	6000 × 1.03 or 6180 or 6000 × 0.03 or 180 or 6000 × 1.01 or 6060 or 6000 × 0.01 or 60	M1	6000 × 1.05 or 6300 6000 × 0.05 or 300	
	their 6180×1.03 or $6365.4(0)$ or their 6180×0.03 or $185.4(0)$ or $365.4(0)$ or their 6060×1.05 or 6363 or their 6060×0.05 or 303 or 363	M1dep	6000 × 1.03 ² or 6000 × 1.0609 or 6000 × 1.01 × 1.05 or 6000 × 1.0605 or 6300 × 1.01	
			or 6300 × 0.01 or 63	
10	6365.4(0) and 6363 and No or 365.4(0) and 363 and No	A1	accept 2.4(0) difference to imply 'No'	
	Alternative method 2			
	1.03 or 1.01 or 1.05	M1		
	1.03 ² or 1.03 × 1.03 or 1.0609 or 0.0609 or 6.09(%) or 1.01 × 1.05 or 1.0605 or 0.0605 or 6.05(%)	M1dep		
	1.0609 and 1.0605 and No or 0.0609 and 0.0605 and No	A1	accept 0.0004 difference to imply 'No'	
	or 6.09(%) and 6.05(%) and No		accept 0.04(%) difference to imply 'No'	

Additional Guidance is on the next page

	Additional Guidance			
-	Accept any clear indication that the Offer 1 amount is different to the Offer 2 amount for 'No'			
	If build up methods are used they must be complete			
	6000×0.03^2 implies 6000×0.03	M1		
	1.03 ³ implies 1.03	M1		
	360 without 180 seen (simple interest)	MO		
10 cont	If a different starting value is used, apply Alt 2 with correctly evaluated answers eg $600 \times 1.03^2 = 636.54$	M1M1A1		
	$600 \times 1.03 = 636.34$ $600 \times 1.01 \times 1.05 = 636.30$			
	No, pay less with Offer 1 (condone incorrect choice of Offer 1)			
	$500 \times 1.03 = 515$ $515 \times 1.03 = 530.45$ $500 \times 1.01 = 505$ $505 \times 1.05 = 530.25$ No, they are different	M1M1A1		

	(200 + 160 + 104 + 100) ÷ 4 or 564 ÷ 4 or 141	M1		
	their 141 ÷ 3 × 8 or 47 × 8 or 1128 ÷ 3 or 376	M1dep	oe accept 141 × 2.66() o	r 141 × 2.67
	their 376 × 5 or 1880	M1dep		
11	427	A1		
	Additional Guidance			
	(270 + 400 + 483 + 300 + 427) ÷ 5 e	M1M1M1A0		
	$(1453 + x) \div 5 = 376$ and $1453 + x =$	M1M1M1		
	$(1453 + x) \div 5 = 376$			M1M1M0
	200 + 160 + 104 + 100 ÷ 4 scores M0 unless recovered			

Question	Answer	Mark	Comments		
	Alternative method 1				
	$4 \times 5 + c = 23$	M1	oe 20 + <i>c</i> = 23		
	<i>c</i> = 3	A1	implied by (0, 3) or 3 shown as <i>y</i> -axis intercept		
	y = 4x + 3	A1	SC1 $y = 4x + c$ $c \neq 3$		
	Alternative method 2	<u> </u>			
	y - 23 = 4(x - 5)	M1	oe		
	y - 23 = 4x - 20	M1dep			
	y = 4x + 3	A1	SC1 $y = 4x + c$ $c \neq 3$		
12	Additional Guidance				
	If 3 is clearly linked to c in $y = mx + c$ condone M1A1				
	4x + 3 on answer line, $y = 4x + 3$ seen in working			M1A1A1	
	4x + 3 on answer line, $y = 4x + 3$ not seen in working			M1A1A0	
	m = 4, $c = 3$ on answer line, $y = 4x + 3$ seen in working			M1A1A1	
	m = 4, c = 3			M1A1A0	
	y = mx + 3			M1A1A0	
	$23 = 4 \times 5 + 3$ embedded value for <i>c</i>			M1A0A0	
	$4x + c$ on answer line with $c \neq 3$			M0A0A0	

Question	Answer	Mark	Comments		
		1			
	–2 a	B1	oe eg −a − a or 2(−a)		
12(0)	Additional Guidance				
13(a)	Do not accept in column vector form unless correct answer is also seen Do not accept –a2 for –2a				

13(b)	$\begin{pmatrix} -8\\2 \end{pmatrix}$ drawn on the grid with direction shown	B2	± ¼ centimetre square B1 $\begin{pmatrix} -8\\ 2 \end{pmatrix}$ seen in working or correct line drawn with incorrect direction or no direction shown or correctly joined vectors for c and - d with correct directions shown
	Ade	ditional G	ouidance
	Mark intention, line does not need to b c, d and c – d	be ruled a	nd ignore all labelling for

14	Class X has a greater proportion of boys than class Y	B1	
----	---	----	--

Question	Answer	Mark	Comme	nts
	Alternative method 1 – answer writte	en as a fr	action	
	a^2 on numerator	B1	a correctly simplified	
	b^3 on denominator or b^{-3} on numerator	B1	<i>b</i> correctly simplified	
	c cancelled and d on denominator or d^{-1} on numerator	B1	d correctly simplified	
	Alternative method 2 – answer writte	en only a	s a product	
	a ²	B1	a correctly simplified	
	b^{-3}	B1	b correctly simplified	
	d^{-1} and c cancelled	B1	d correctly simplified	
	Ade	ditional G	Buidance	
15	If answer line is blank, marks can be a	awarded i	n the working	
	Do not award any marks if addition or attempt	subtractio	on is seen in their best	
	Condone use of capital letters			
	Penalise use of x sign by one mark or awarded eg $a^2 \times b^{-3} \times d^{-1}$	nly if full m	narks would have been	B1B1
	$\frac{a^2}{db^3}$ or $\frac{a^2d^{-1}}{b^3}$ or $\frac{a^2b^{-3}}{d}$ or a^2b^{-3}	$^{3}d^{-1}$		B1B1B1
	$\frac{a^2b^2}{db^5}$ or $\frac{a^2b^2d^{-1}}{b^5}$ or $a^2b^2d^{-1}b^{-5}$			
	$\frac{a^3}{dab^3}$	B0B1B1		
	$\frac{a^2c}{cdb^3}$			B1B1B0
	$\frac{a}{d} \times b^3$ use of x sign not penalised a	s full marl	ks would not be awarded	B0B0B1
	$a^2 + b^{-3} - d^{-1}$			B0B0B0

Question	Answer	Mark	Comments
	$\frac{x}{360} \times \pi \times (1.5r)^{2}$ or $\frac{1}{160} \pi xr^{2}$ or $0.019xr^{2}$ or $\frac{2x}{360} \times \pi \times r^{2}$ or $\frac{1}{180} \pi xr^{2}$ or $0.017xr^{2}$	M1	oe eg (working in radians) $\frac{1}{2} \times (1.5r)^2 \times x$ or $\frac{1}{2} \times r^2 \times 2x$
16	$\frac{1}{160} \pi x r^{2} \text{ and } \frac{1}{180} \pi x r^{2} \text{ and } A$ or $0.019xr^{2} \text{ and } 0.017xr^{2}$ and A	A1	oe eg (working in radians) $\frac{9}{8}r^2x$ and r^2x and A
	Ad	ditional G	Guidance
	Methods must be algebraic, containing	-	
	If a box is not ticked, must say 'A' with award M1A1	nout contra	adiction in working to
	To award A1 their areas must be in a $\frac{2.25}{360}\pi xr^2$ and $\frac{2}{360}\pi xr^2$ and A ticked		ble form eg
	Ignore further incorrect working after A	A1 scored	

Question	Answer	Mark	Commer	nts	
	Alternative method 1				
	0.03 × 200 or 6 or 0.035 × 200 or 7 or 0.015 × 200 or 3 or 0.01 × 200 or 2	M1			
	0.035 × 200 or 7 and 0.01 × 200 or 2	M1dep			
17	5	A1			
	Alternative method 2				
	0.035-0.01 or 0.025	M1			
	their 0.025 × 200	M1dep			
	5	A1			
	Additional Guidance				
	Condone errors in calculating 6 or 3 a required to correctly answer the quese g 5, 7, 3, 2 the range is $7 - 2 = 5$		values 7 and 2 are	M1M1A1	
	5 on answer line does not imply full n eg $0.03 \times 200 = 8$ $8 - 3 = 5$	narks, met	hod must be checked	M1M0A0	

	$3x^2 - 9x - 4 = 0$ or $-3x^2 + 9x + 4 = 0$	B1	must see = 0 on answer li	ne
	Ade			
18(a)	Do not accept x 9 or 9 × x for 9 x			
	$3x^2 + -9x + -4 = 0$	B1		
	$3x^2 - +9x - +4 = 0$			B0

Question	Answer	Mark	Commer	nts
	$\frac{9 \pm \sqrt{(-9)^2 - 4 \times 3 \times -4}}{2 \times 3}$ or $\frac{9 \pm \sqrt{129}}{6}$ or $\left(x - \frac{3}{2}\right)^2 - \frac{9}{4} = \frac{4}{3}$ or $\frac{3}{2} \pm \sqrt{\frac{43}{12}}$ or 3.392 or 3.393 or -0.392 or -0.393	M1	oe correct or ft their 3-term	quadratic seen
10/b)	3.39 and -0.39	A1ft	correct or ft their 3-term	-
18(b)	Additional Guidance			
	The word 'and' does not need to be seen to award A mark			
	Full fraction line, correct full square ro to award M1 but can be recovered by			
	$3x^2 - 9x + 4 = 0$ in 18(a)			
	$\frac{9 \pm \sqrt{33}}{6}$ or $\frac{3}{2} \pm \sqrt{\frac{11}{12}}$ or 2.457 or 0.542			M1
	2.46 and 0.54	2.46 and 0.54		
	3.39 and -0.39 on answer line with no incorrect working			M1A1
	2.46 and 0.54 on answer line with no incorrect working			M1A1ft
	One correct answer with no incorrect	working		M1A0

Question	Answer	Mark	Comme	nts
	Median is at 10.5	B1	oe eg median should be on right	e square to the
	Upper quartile should be at 15	B1	oe eg IQR is 9 eg UQ should be two sq	uares to the left
-	Additional Guidance			
-	Ignore irrelevant and non-contradictory statements alongside a B1 response			se
	To score either mark, answers must correctly refer to a number of minutes or exact position on the box plot			
19	The median should be at 11			B1
	The median is half a minute too low			B1
	The interquartile range should be 8			B1
	The interquartile range is one minute	too big		B1
	Upper quartile = 16 minutes			B1
	The median is in the wrong place			B0
	The median is 11			B0
	The median is wrong B0			
	The median is inaccurate by 1 square)		B0
	The interquartile range is too small			B0
	The upper quartile should be at 16			B0
	The upper quartile is wrong by 1			В0

Question	Answer	Mark	Comm	ents
	$d \alpha v^{2}$ or $d = k \times v^{2}$ or $6 = k \times 20^{2}$ or $c \times d = v^{2}$ or $c \times 6 = 20^{2}$	M1	oe eg $v = kd^{\frac{1}{2}}$	
	(k =) $6 \div 20^2$ or 0.015 or (c =) $20^2 \div 6$ or 66.66 or 66.67	M1dep	oe eg $\frac{6}{400}$ or $\frac{3}{200}$ $\frac{400}{6}$ or $\frac{200}{3}$	
20(a)	$d = 0.015 \times v^{2}$ or $\frac{200}{3} \times d = v^{2}$	A1	oe equation	
	Ad	ditional G	uidance	
	Working for second M mark must folk	ow from th	eir initial equation	
	$d \approx 0.015 \times v^2$			M1M1A0
	(k =) 0.015 or (c =) $\frac{200}{3}$ with no incorrect working			M1M1A0
	$0.015v^2 \text{ or } \frac{200}{3}d$			M1M1A0

Question	Answer	Mark	Commei	nts
	their 0.015 × 30 ² their 0.015 × 900 or $6 \times \left(\frac{30}{20}\right)^2$ or $30^2 \div$ their $\frac{200}{3}$ or $900 \div \frac{200}{3}$ or $6 \div \left(\frac{20}{30}\right)^2$ 13.5	M1	oe	
		A1ft	ft their 0.015 provided us $0.015 \times v^2$	sing $d =$ their
20(b)	Ade	ditional G	Buidance	
20(b)	Must use $\times 30^2$ or $\times 900$ or $\times \left(\frac{30}{20}\right)^2$	² for M1		
	<i>d</i> α 13.5			M1A0
	If in part (a) $d = \mathbf{k} \times v$ $6 = \mathbf{k} \times 20$ $d = \frac{6}{20}v$			M0 part (a)
	and in part (b) $d = \frac{6}{20} \times 30, m = 9$			M0 part (b)
	If in part (a) $d = \mathbf{k} \times v$ $6 = \mathbf{k} \times 20$ $d = \frac{6}{20}v$			M0 part (a)
	and in part (b) $d = \frac{6}{20} \times 30^2$, $d = 270$			M1A1ft part (b)

Question	Answer	Mark	Comments		
	Alternative method 1 – making 10 litres of paint				
	225 ÷ 50 (= 4.5(0)) or 80 ÷ 20 (= 4(.00))	M1	cost of 1 litre for one colour		
	225 ÷ 50 (= 4.5(0)) and 80 ÷ 20 (= 4(.00))	M1	cost of 1 litre for both colours		
	their 4.5(0) × 7 + their 4(.00) × 3 or 43.5(0)	M1dep	31.5(0) + 12(.00) dep on M2		
	their 43.5(0) × 1.4 or 60.9(0) or their 43.5(0) ÷ 2 × 1.4	M1dep	oe dep on M3		
	30.45	A1			
21	Alternative method 2 – making 5 litres of paint				
	5 ÷ (7 + 3) or 0.5	M1			
	their 0.5 × 7 or 3.5 and their 0.5 × 3 or 1.5	M1dep	3.5 : 1.5		
	$\frac{\text{their 3.5}}{50} \times 225 \text{ or } 15.75$ and $\frac{\text{their 1.5}}{20} \times 80 \text{ or } 6$	M1dep	dep on M2		
	(their 15.75 + their 6) × 1.4	M1dep	oe 21.75 × 1.4 or 21.75 + 8.7(0) dep on M3		
	30.45	A1			

Mark scheme for Question 21 continues on next page

	Alternative method 3 – making 10 litres of paint when profit is added at the start				
	225 × 1.4 (= 315) and 80 × 1.4 (= 112)	M1	40% added to the cost of both colours		
	their 315 ÷ 50 (= 6.3(0)) or their 112 ÷ 20 (= 5.6(0))	M1dep	selling price of 1 litre of either colour		
	their 315 ÷ 50 (= 6.3(0)) and their 112 ÷ 20 (= 5.6(0))	M1dep	selling price of 1 litre of both colours		
	their 6.3(0) × 7 + their 5.6(0) × 3 or 60.9(0)	M1dep	oe 44.1(0) + 16.8(0) dep on M3		
	30.45	A1			
	Alternative method 4 – making <i>n</i> I	itres of pa	int		
21 cont	$225 \div 50 \times 0.7n$ or $3.15n$ or $80 \div 20 \times 0.3n$ or $1.2n$	M1	cost of blue or yellow paint in <i>n</i> litres of green paint		
	$225 \div 50 \times 0.7n$ or $3.15n$ and $80 \div 20 \times 0.3n$ or $1.2n$	M1	cost of blue and yellow paint in <i>n</i> litres of green paint		
	their 3.15 <i>n</i> + their 1.2 <i>n</i> or 4.35 <i>n</i>	M1dep	total cost of <i>n</i> litres of green paint dep on M2		
	their 4.35 <i>n</i> × 1.4 or 6.09 <i>n</i>	M1dep	oe dep on M3		
	30.45	A1			
	Additional Guidance				
	If the student attempts more than on award the highest mark	e method,	mark each method and		
	Alt 4 value of <i>n</i> must be clear eg 10 implied)	0 litres tota	Il or 700:300 (1000 litres		
	Alt 4 their $4.35n \div k \times 1.4$ implies the attempt to scale to the cost of a 5-lite		1.4 where ÷ k is their M1M1M1M1		

Question	Answer	Mark	Comments
22(a)	<u>12</u> 29	B1	

22(b)	8 15	B1		
-------	---------	----	--	--

	Correct curve B2 B2 correct curve must be correct shape and pass through (0, 1) and be in correct position relative to $y = \begin{bmatrix} x \\ 2 \end{bmatrix}$ B1 correct shape and pass through (0, 1) Additional Guidance			
23				
	Correct curve must be an exponential graph			
	Correct position must be			
	above $y = x^{x}$ for $x > 0$			
	2			
	below $y = \frac{x}{2}$ for $x < 0$			

	$\sin 24 = \frac{h}{20}$	M1	oe $\cos 66 = \frac{h}{20}$ $\frac{20}{90} = \frac{h}{\sin 24}$	
24	20 × sin 24 or 8.1	M1dep	$\frac{20 \times \cos 66}{\frac{20}{\sin 90} \times \sin 24}$	
	[1215, 1221]	A1	with no incorrect working	j seen
	Additional Guidance			
	150 × 20 × sin 24			M1M1

Question	Answer	Mark	Comments	
25(a)	Reflection y = 1	B1 B1		
	or AC Additional Guidance			
	Mirror line	B0		
	Contradiction for line of reflection			B0
	More than one transformation given			B0

	Alternative method 1				
	Rotation	B1			
	Centre (0, 1)	B1			
	180°	B1	degrees symbol does no seen	t have to be	
	Alternative method 2				
	Enlargement	B1			
	Centre (0, 1)	B1			
25(b)	Scale factor –1	B1			
	Additional Guidance				
	For centre (0, 1) allow about (0, 1) or (0, 1)			B1	
	For centre (0, 1) do not allow 0, 1			B0	
	More than one transformation given eg rotation then translation			B0	
	Do not allow half turn for 180°				
	Ignore clockwise or anticlockwise				
	For scale factor allow sf or scale or $(x) -1$				

Question	Answer	Mark	Commer	nts
26	$16 - x^{3}$ $x^{3} = 16 - 24$ or $x^{3} = -8$ or $x = \sqrt[3]{-8}$ or $-x^{3} = 24 - 16$ or $-x^{3} = 8$ or $-x = -\sqrt[3]{-8}$	M1 M1dep		
	-2	A1		
	Additional Guidance			
	$16 - x^3 = 24$ $x^3 = 24 - 16$			M1M0A0

Question	Answer	Mark	Comment	S
	$\sqrt{144}$ or 12	B1	radius of larger circle may be seen on diagram	
	4x their 12 or 9.6 5	M1	their 12 must be a value may be seen on diagram	
	$(\cos AOB =)$ $\frac{\text{their } 12^2 + \text{their } 9.6^2 - 20^2}{2 \times \text{their } 12 \times \text{their } 9.6}$ or $\frac{144 + 92.16 - 400}{230.4}$ or $-\frac{32}{45}$ or -0.71	M1dep	oe	
27	\cos^{-1} their $-\frac{32}{45}$	M1dep	dep on M2	
	135.()	A1		
	Additional Guidance			
	$\frac{4}{5} \times 144 = 115.2$		В0 M1	
	$(\cos AOB =) \frac{144^2 + 115.2^2 - 20^2}{2 \times 144 \times 115.2}$			M1M0A0
	12 seen, but a different value used for the radius of the larger circle cannot score B1M1			
	x + y = 12 seen, but $x = 6$ used to find	l radius O	A = 4.8	B0M1

Question	Answer	Mark	Comments
	$\frac{1}{2} \times 5 \times 8 \text{ or } 20$ or $\frac{1}{2} \times (8+9) \times (9-5) \text{ or } 34$	M1	oe eg $\frac{1}{2} \times 4 (\times 1)$ and 4×8 or 2 and 32
	$\frac{1}{2} \times 5 \times 8 \text{ or } 20$ and $\frac{1}{2} \times (8+9) \times (9-5) \text{ or } 34$	M1dep	$\frac{1}{2} \times 4 (\times 1)$ and 4×8 or 2 and 32
28(a)	$\frac{1}{2} \times (9 + 4.6) \times 1$ + $\frac{1}{2} \times (4.6 + 2) \times 1$ + $\frac{1}{2} \times 1 \times 2$ or $6.8 + 3.3 + 1$ or 11.1 or $\frac{1}{2} \times (9 + 4.6) \times 1 + \frac{1}{2} \times 2 \times 4.6$ or $6.8 + 4.6$ or 11.4 or $\frac{1}{2} \times (9 + 2) \times 2 + \frac{1}{2} \times 1 \times 2$ or $11 + 1$ or 12 or $\frac{1}{2} \times 3 \times 9$ or 13.5	M1	correct attempt to estimate the full area below curve using trapezia, a trapezium and a triangle or a triangle
	Correctly evaluates 20 + 34 + their correct estimate for the full area below curve, which must sum to an answer which is less than or equal to 67.5	A1	M3 must be awarded

Additional Guidance is on the next page

	Additional Guidance	
28(a) cont	If first two marks are awarded, the third area must not come from 67.5 minus their two areas	
	If a concluding statement is made do not award A mark if it contains an error	

	1	B1		
28(b)	m/s ² or ms ⁻² or metres per second per second	B1 ditional G	oe allow mps ² or m/s/s Guidance	
	Do not accept fractions			
	m/s ⁻²			B0