GCSE
 Mathematics

Paper 3 Higher Tier
Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.		
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.		
B	Marks awarded independent of method.		
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.		
SC	A mecial case. Marks awarded for a common misinterpretation which has some mathematical worth.		
awarded.		\quad	A mark that can only be awarded if a previous independent mark
:---			
has been awarded.			

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

$\mathbf{1}$	$-4<x \leqslant 5$	B1	
	Additional Guidance		

| $\mathbf{2}$ | $1: 2$ | B1 | |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

| 3 | $2 n-12$ | B1 | |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

| 4 | $y=-5$ | B1 | |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

5	$x^{2}-8 x-8 x+64$	M1	allow one error or omission terms may be seen in a grid	
	$x^{2}-16 x+64$	A1	Ignore fw eg if attempting to solve Do not ignore fw if attempting to simplify	
	Additional Guidance			
	$x^{2}-16 x(+\mathrm{k}) \quad \mathrm{k} \neq 64$			M1A0
	$x^{2}-8 x+64$			M1A0
	$x^{2}-16 x+64=-15 x^{3}+64$			M1A0
	$x^{2}-8 x+8 x+64$ (one error)			M1A0
	$x^{2}+8 x+8 x+64$ (one error)			M1A0
	$x^{2}-6 x+8 x+64$ (two errors)			MOAO
	$x^{2}+64$ (two errors)			MOAO

Question	Answer	Mark	Comments

6	Lists three from $3,9,27,81,243,729$ or lists three from $1,4,9,16, \ldots, 225,256,289$ or correctly evaluating a power of $3+$ a square number or correctly evaluating 268 - a power of 3 or correctly evaluating 268 - a square number	M1	$\begin{aligned} & \text { eg } 27+25=52 \text { or } 3^{3}+5^{2}=52 \\ & \text { eg } 268-27=241 \\ & \text { eg } 268-49=219 \end{aligned}$	
	$243+25$ or $3^{5}+5^{2}$	A1	oe Addition sign must on answer line	orking or
	Additional Guidance			
	$3^{5}, 5^{2}$ or 3^{5} and 5^{2} on answer line			M1A0
	$268-243=25$			M1A0
	243,25 or 243 and 25 on answer line			M1A0
	Beware of $5^{3}+5^{2}$			

7	$10<t \leq 15$	B 1		
	Additional Guidance			

Question	Answer	Mark	Comments

	Alternative method 1		
	$\begin{aligned} & P A B=51 \\ & \text { or } P A D=51 \\ & \text { or } A P C=180-51 \\ & \text { or } A P C=129 \end{aligned}$	M1	
$\begin{gathered} 8 \\ \text { Alt } 1 \text { of } \\ 2 \end{gathered}$	$\begin{aligned} & A B P=180-51-\text { their } 51 \\ & \text { or } A B P=180-102 \\ & \text { or } A B P=78 \\ & \text { or } A D C=180-\text { their } 51-\text { their } 51 \\ & A D C=180-102 \\ & A D C=78 \end{aligned}$	M1dep	$P A B=51 \text { and } P A D=51$ or $B A D=102$
	$B C D=180-$ their 78 or $B C D=360-$ their 129 - their 51 - their 78 or $B C D=360-258$ or $B C D=102$ or $4 x=180$ - their 78 or $4 x=360$ - their 129 - their 51 their 78 or $4 x=360-258$ or $4 x=102$ or $102 \div 4$	M1dep	oe eg $B C D=(360-2 \times$ their 78$) \div 2$ or $4 x=(360-2 \times$ their 78$) \div 2$
	25.5	A1	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Alternative method 1

$v-u=a t$	$-a t=u-v$	M 1	
$t=\frac{v-u}{a}$	$t=\frac{u-v}{-a}$	A 1	oe

Alternative method 2

$\frac{v}{a}=\frac{u}{a}+t$	M1		
$t=\frac{v}{a}-\frac{u}{a}$	A1	oe	
Additional Guidance			
$t=(v-u) \div a$			M1A1
$v-u=a t$ and $t=v-u \div a$			M1A0
$\frac{v-u}{a} \text { or } \frac{u-v}{-a} \text { or } \frac{v}{a}-\frac{u}{a}$			M1A0
$a=\frac{v-u}{t}$ with or without working			M1A0
$t=v-u \div a$			MOAO
$t=\frac{v+u}{a}$			MOAO

Question	Answer	Mark	Comments

9(b)	(Speed) $\mathrm{m} / \mathrm{s}^{\text {or }} \mathrm{ms}^{-1}$ (Acceleration) $\mathrm{m} / \mathrm{s}^{2}$ or ms^{-2} or $\mathrm{m} / \mathrm{s} / \mathrm{s}$	B2	B1 for one correct or two mutually consistent units eg km/h and $\mathrm{km} / \mathrm{h}^{2}$ Accept mps for m / s and mps^{2} for $\mathrm{m} / \mathrm{s}^{2}$	
	Additional Guidance			
	Allow units given in words eg metres per second metres per second squared or metres per second per second			
	$\mathrm{m} / \mathrm{s}^{-1}$ (speed)			B0
	$\mathrm{m} / \mathrm{s}^{-2}$ (acceleration)			B0

| 10 | Two pairs of intersecting arcs with
 equal radii $>0.5 A B$ | M 1 | tolerance $\pm 0.1 \mathrm{~cm}$ |
| :---: | :--- | :---: | :--- | :--- |
| | Perpendicular bisector drawn with
 correct method seen | A 1 | tolerance $\pm 0.1 \mathrm{~cm}$ |
| | Additional Guidance | | |
| | | | |

Question	Answer	Mark	Comments

		B1B1B0B1ft
		B1B1B0B1ft

Question	Answer	Mark	Comments

11(b)	85\% or 0.85	M1		
	$27.2 \div 0.85$ or $27.2 \div 85(\times 100)$ or 0.32	M1dep		
	32(.00)	A1	Correct money notation Allow £32.00p	
	Additional Guidance			
	32.0			M1M1A0

12(a)	$140 \div 50$ or 2.8 or $140 \div 50 \times 60$ or 168	M1	oe	
	2 (hours) 48 (minutes)	A1	258 (minutes) (after midday) implies M1A1	
	4.18 (pm)	A1ft	oe ft their time in hours and minutes with M1 awarded	
	Additional Guidance			
	$140 \div 50$ or $2.8=2$ hours 80 minutes $=3$ hours 20 minutes, Answer 4.50			M1A0A1ft
	$140 \div 50$ or $2.8=2$ hours 8 minutes, Answer 3.38			M1A0A1ft
	$140 \div 50$ or $2.8=2$ hours 80 minutes $=3$ hours 20 minutes, Answer 4.5			M1A0A0
	$140 \div 50$ or 2.8, Answer 4.10			M1A0A0
	2 hours 8 minutes implies attempt at $140 \div 50$			M1

Question	Answer	Mark	Comments	
12(b)	Valid statement	B1ft	eg the arrival time will be later it will be later time will be more ft their time in (a) eg it will be after 4.18pm	
	Additional Guidance			
	It will be delayed			B1
	The arrival time will be increased			B1
	He will reach there late			B1
	The time will go up			B1
	It will go up			B1
	The journey will take longer so the	val time	later	B1
	Take longer			B0
	Longer			B0
	Slower (restating question)			B0
	ou won't get there as quick			B0
	Time will be longer			B0
	Journey will be longer			B0
	'Longer' is referring to a time period rather than an arrival time			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

14(a)	$6+5+2 x+x+2=31$ or $3 x+13=31$ or $3 x=18$ or $\frac{5+2 x}{31}$ or $\frac{5+2 x}{3 x+13}$	M1	oe equation$6+5+2(6)+6+2=31 \text { (embedded }$ answer)	
	($x=$) 6	A1		
	$\frac{17}{31} \text { or } .548 \ldots \text { or } .55$ or 54.8...\% or 55%	A1ft	$\mathrm{ft} \frac{5+\text { their } 2 x}{31}$ and M1 A0 or $\mathrm{ft} \frac{2-\operatorname{their} x}{31}$ and M1 A0	
	Additional Guidance			
	$x=6$, answer $\frac{12}{31}$ or answer $\frac{12}{31}$ alone (implied $x=6$)			M1A1A0
	$3 x=18, x=5, \text { answer } \frac{15}{31} \text { or } \frac{18}{31}$			M1A0A1ft

$\mathbf{1 4 (b)}$	$\frac{5}{11}$ or $.45 \ldots$ or $45 .(\ldots) \%$	B1	oe
	Additional Guidance		

15	$2 x y$	B1		
	Additional Guidance			

16	36	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

	$\begin{aligned} & 13-5 \rightarrow 4152 \\ & \text { or } 8 \rightarrow 4152 \end{aligned}$	M1	oe eg $4152 \div 8$ or 519 seen or 8 parts is 4152
17	$\frac{x+4152}{x}=\frac{13}{5}$ or $5 x+20760=13 x$ or $20760=8 x$ or $2595=x$ or (number of men =) 6747 or (number of women =) 2595 or (total number of people =) 12926 or $4152 \div 8 \times 7$ or 519×7	M1dep	oe
	3633	A1	
	Additional Guidance		

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

19	65	B1	
	Alternate segment (theorem)	B1dep	
	Additional Guidance		
	65 alternative segment (theorem)	B1 B0	
	65 alternate angles	B1 B0	

| $\mathbf{2 0}$ | 3rd box indicated | B1 | |
| :--- | :--- | :---: | :---: | :---: |
| | Additional Guidance | | |
| | | | |

21	3^{8} or 3^{9} or y^{6} or $2 \times 3^{4} \times y^{3} \times 2 \times 3^{4} \times y^{3}$ or $3 \times 2 \times 3^{4} \times y^{3} \times 2 \times 3^{4} \times y^{3}$	M1	78732 or 19683	
	$2^{2} \times 3^{8} \times y^{6}$ or $3 \times 2^{2} \times 3^{8} \times y^{6}$ or 2^{2} and 3^{9} and y^{6} or ${ }_{2}{ }^{a} \times{ }_{3}^{b} \times y^{c}$ with two powers correct	M1dep	$\begin{aligned} & 2^{2} \times 19683 y^{6} \\ & 78732 y^{6} \end{aligned}$	
	$2^{2} \times 3^{9} \times y^{6}$	A1	Must be in index form Do not ignore fw	
	Additional Guidance			
	$2^{2} \times 3^{8} \times y^{6}$			M1 M1 A0
	$2^{2}+3^{9} \times y^{6}$			M1 M1 A0
	$2^{2}+3^{8}+y^{6}$			M1 M0 A0

Question	Answer	Mark	Comments

22

$\begin{aligned} & 6^{2}+9^{2}-2 \times 6 \times 9 \times \cos 120 \\ & \text { or } 36+81-108 \cos 120 \\ & \text { or } 36+81+54 \\ & \text { or } 171 \end{aligned}$	M1	oe	
$\begin{aligned} & \sqrt{6^{2}+9^{2}-2 \times 6 \times 9 \times \cos 120} \\ & \text { or } \sqrt{36+81-108 \cos 120} \\ & \text { or } \sqrt{36+81+54} \end{aligned}$	M1dep	oe	
$\begin{aligned} & {[13,13.1]} \\ & \text { or } \sqrt{171} \text { or } 3 \sqrt{19} \end{aligned}$	A1		
Additional Guidance			
$\begin{aligned} \begin{aligned} 6^{2}+9^{2} & =36+81 \\ & =117 \end{aligned} \\ \text { Answer } \sqrt{117} \end{aligned}$			M0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

	Alternative method 1			
24	$4 a=9 b$		M1	oe $\frac{a}{b}=\frac{9}{4}$
	$\begin{aligned} & 4 a=9 \times \frac{7 c}{10} \\ & \text { or } 40 a=63 c \end{aligned}$	$40 a=90 b$ and $90 b=63 c$	M1dep	$\begin{aligned} & \text { oe } \\ & 9: \frac{40}{7} \end{aligned}$
	$63: 40$		A1	Accept $\frac{63}{40}: 1$ or $1.575: 1$ or $1: \frac{40}{63}$
	Alternative method 2			
	$b: c=7: 10$		M1	
	$\begin{aligned} & a: b=63: 90 \text { and } b: c=90: 40 \\ & \text { or } 63: 90: 40 \end{aligned}$		M1dep	oe common value for b
	63: 40		A1	$\begin{aligned} & \text { Accept } \frac{63}{40}: 1 \text { or } 1.575: 1 \\ & \text { or } 1: \frac{40}{63} \end{aligned}$

Question	Answer	Mark	Comments

24 cont	Alternative method 3			
	$\begin{aligned} & a=\frac{9 b}{4} \text { or } c=\frac{10 b}{7} \\ & \frac{9 b}{4}: \frac{10 b}{7} \text { or } \frac{9}{4}: \frac{10}{7} \end{aligned}$	M1	oe	
		M1dep		
	63 : 40	A1	$\begin{aligned} & \text { Accept } \frac{63}{40}: 1 \text { or } 1.575: 1 \\ & \text { or } 1: \frac{40}{63} \end{aligned}$	
	Alternative method 4			
	$c=\frac{10}{7} b$	M1	$\operatorname{eg} a: c=a: \frac{10}{7} b$	
	$9: \frac{10}{7} \times 4$ or $9: \frac{40}{7}$	M1dep	oe	
	63 : 40	A1	Accept $\frac{63}{40}: 1$ or $1.575: 1$ or $1: \frac{40}{63}$	
	Additional Guidance			
	$2^{\text {nd }}$ method mark is for a link between a and cor a correct ratio in an unsimplified form			
	$40: 63$ on answer line			M1M1A0

Question	Answer	Mark	Comments

26	Full explanation stating one of $a+b$ or $a-b$ must be 1 and $a+b$ cannot be 1 and $a-b$ must be 1	B2	B1 partial explanation ie $a+b$ or $a-b$ must be 1 or $a+b$ cannot be 1 or $a-b$ must be 1
	Additional Guidance		

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

28	$\begin{aligned} & p \times q^{1-1}=10 \\ & \text { or } p \times q^{0}=10 \\ & \text { or } p \times q^{6-1}=0.3125 \\ & \text { or } p \times q^{5}=0.3125 \end{aligned}$	M1	oe
	$p=10$ or $10 \times q^{6-1}=0.3125$ or $q^{5}=0.3125 \div$ their 10 or $q^{5}=0.03125$	M1dep	
	$\sqrt[5]{\text { their } 0.03125}$ or 0.5	M1dep	oe
	their $10 \times$ their 0.5^{2} or their $10 \times$ their $(\sqrt[5]{\text { their } 0.03125})^{2}$ or their $10 \times$ their $0.03125^{\frac{2}{5}}$	M1dep	
	2.5	A1	
	Additional Guidance		

29	$-3-2-1012$ B2B1 for 5 correct and 0 incorrect or 6 correct and 1 incorrect		
	Additional Guidance		
	Do not accept coordinates		

Question	Answer	Mark	Comments

30	$\frac{6 x^{2}+3}{3}$ or $2 x^{2}+1$ or $\frac{6 x^{2}}{3}+3$ or $2 x^{2}+1+4$	M1	oe
	$2 x^{2}+5$	A1	
	Additional Guidance		

[^0]: Copyright © 2017 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

