

GCSE MATHEMATICS 8300/3H

Higher Tier Paper 3 Calculator

Mark scheme

November 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copy right © 2019 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments
1	0.26	B1	
2	$\frac{3}{2}$	B1	
3		B1	
	-2 x		
4	6.365 <i>≤ x</i> < 6.375	B1	

Question	Answer	Mark	Comment	ts	
	Alternative method 1				
	7x - 3x = 36 - 16	M1	oe elimination of one varimplied by $4x = n$, where $n < 36$ and $n \ne 1$		
	4x = 20 or x = 5	A1	oe		
	<i>y</i> = 0.5	A1	oe		
	Alternative method 2				
	$7 \times 2y - 3 \times 2y = 7 \times 16 - 3 \times 36$ or 14y - 6y = 112 - 108	M1	oe elimination of one vari implied by $21x + 14y = 1$ 21x + 6y = 108 followed where $n < 112$ and $n \ne$	12 and by $8y = n$,	
	8y = 4 or $y = 0.5$	A1	oe		
	<i>x</i> = 5	A1			
5	Alternative method 3				
J	$36 - 7x = 16 - 3x$ or $\frac{36 - 2y}{7} = \frac{16 - 2y}{3}$	M1	oe elimination of one var	iable	
	4x = 20 or x = 5 or $8y = 4 \text{ or } y = 0.5$	A1	oe collects terms oe		
	x = 5 and $y = 0.5$	A1	oe		
	Ado				
	x = 5 and $y = 0.5$			M1A1A1	
	One correct value with one incorrect value (or no second value) and no working eg $x = 5$ and $y = 2$ or eg $x = 5$			M1A1A0	
	Embedded, correct values in both equations eg $7 \times 5 + 2 \times 0.5 = 36$ and $3 \times 5 + 2 \times 0.5 = 16$			M1A1A0	
	Embedded, correct values in one equation only eg 7 × 5 + 2 × 0.5 = 36			M1A0A0	

Question	Answer	Mark	Comme	nts
6(a)	3 × 18 or 54 or 2 × 18 + 14 or 50 or 18 + 3 × 14 or 60 or 4 × 14 or 56 or 1 - 0.25 or 0.75 seen	M1	oe	
o(a)	$3 \times 18 \times (1 - 0.25)$ or $3 \times 18 \times 0.75$ or 40.5 or $18 \times (1 - 0.25)$ or 18×0.75 or $13.5(0)$	M1dep	oe	
	40.50	A1	condone £40.50p	
	Additional Guidance			
	40.5 on answer line			M1M1A0

Question	Answer	Mark	Commer	nts
	Should have multiplied 15 by 6 or 90	B1	oe eg 15×6 accept $\frac{240 \times 600}{40 \times 40}$ or -	144000 1600
	Add	litional G	Guidance	
	lgnore irrelevant statements alongsion	de a corre	ctanswer	
	15 × 6 seen but evaluated incorrectly	/		B1
	Should have multiplied not added			B1
	Should have multiplied at the end	B1		
6(b)	Adding was wrong			B1
	He has added			B1
	Times the number for length and width			B1
	Times the length and width			В0
	Calculation at the end is wrong			В0
	Should have multiplied			В0
	Needs to work out the area			В0
	21 is wrong			В0
	Answer is wrong			В0

Question	Answer	Mark	Comments
	Side of length [7.8, 8.2] cm drawn	B1	
	Correct construction with intersecting arcs, same radius as their base ± 2 mm to identify the third vertex		
7	or correct construction with intersecting arcs, equal radii ± 2 mm, line drawn at 60° and third vertex correctly positioned or correct construction with intersecting arcs, equal radii ± 2 mm and construction arc drawn to correctly identify the third vertex	M1	or
	Triangle with equal sides [7.8, 8.2], with correct construction seen	A1ft	ft B0M1 triangle with equal sides ± 2 mm, with correct construction seen
	Add	l ditional G	l Buidance
	No construction arcs drawn can scor	e a maxin	num of B1

Question	Answer	Mark	Comments	
	$\frac{2}{5} \times 35 \text{ or } \frac{3}{8} \times 48$	M1	oe	
	14 or 18	A1		
9(2)	32	A1		
8(a)	Ado	ditional G	uidance	
	Do not ignore further working after 3	2 seen		
	$\frac{32}{83}$ on answer line			M1A1A0

	Alternative method 1			
			4b-sin 20 fue us (s)	
	35 + 48 – their 32 or	M1	oe their 32 from (a)	
	35 – their 14 + 48 – their 18 or 51		their 14 and their 18 fror	m (a)
	$\frac{51}{83}$ or 0.61(4) or 61(.4)%	A1ft	ft their 32 from (a)	
	Alternative method 2			
	$\left(1 - \frac{2}{5}\right) \times 35 + \left(1 - \frac{3}{8}\right) \times 48$		oe	
8(b)	or $\frac{3}{5} \times 35 + \frac{5}{8} \times 48$	M1		
	or 21 + 30			
	$\frac{51}{83}$ or 0.61(4) or 61(.4)%	A1		
	Additional Guidance			
	Ignore incorrect conversion if correct	t fraction s	seen	
	If their answer in part (a) is a fraction, only allow follow through if their numerator is used in part (b)			
	Alt 1 ft decimal or percentage answe	rs accept	rounding to at least 2 sf	

	Mark	Commer	its	
Alternative method 1				
$\frac{450}{65-35}$ or $\frac{450}{30}$ or 15	M1	oe		
(360 – 65 – 35) × their 15 or 260 × their 15	M1dep	oe M2 $\frac{260}{30} \times 450$ or 8.66 or 8.67 × 450	6() × 450	
3900	A1			
Alternative method 2				
$\frac{360}{65-35}$ × 450 or $\frac{360}{30}$ × 450 or 12 × 450 or 5400	M1	oe		
$\frac{360-65-35}{360}$ × their 5400 or $\frac{260}{360}$ × their 5400	M1dep	oe eg 0.72() × their s	5400	
3900	A1			
Additional Guidance				
260 ÷ 30 = 8.6 and 8.6 × 450 fully correct working seen M ²		M1M1A0		
÷ 8	B1			
	$\frac{450}{65-35} \text{ or } \frac{450}{30} \text{ or } 15$ $(360-65-35) \times \text{ their } 15$ or $260 \times \text{ their } 15$ 3900 Alternative method 2 $\frac{360}{65-35} \times 450 \text{ or } \frac{360}{30} \times 450$ or $12 \times 450 \text{ or } 5400$ $\frac{360-65-35}{360} \times \text{ their } 5400$ or $\frac{260}{360} \times \text{ their } 5400$ 3900 Additional Ad	$\frac{450}{65-35} \text{ or } \frac{450}{30} \text{ or } 15$ $(360-65-35) \times \text{ their } 15$ or $260 \times \text{ their } 15$ 3900 A1 Alternative method 2 $\frac{360}{65-35} \times 450 \text{ or } \frac{360}{30} \times 450$ or $12 \times 450 \text{ or } 5400$ $\frac{360-65-35}{360} \times \text{ their } 5400$ or $\frac{260}{360} \times \text{ their } 5400$ 3900 A1 Additional G $260 \div 30 = 8.6 \text{ and } 8.6 \times 450 \text{ fully correct wo}$	$\frac{450}{65-35} \text{ or } \frac{450}{30} \text{ or } 15$ $(360-65-35) \times \text{their } 15$ or $260 \times \text{their } 15$ 3900 A1 Alternative method 2 $\frac{360}{65-35} \times 450 \text{ or } \frac{360}{30} \times 450$ or $12 \times 450 \text{ or } 5400$ $\frac{360-65-35}{360} \times \text{their } 5400$ or $\frac{260}{360} \times \text{their } 5400$ 3900 A1 Additional Guidance $260 \div 30 = 8.6 \text{ and } 8.6 \times 450 \text{ fully correct working seen}$	

Question	Answer	Mark	Commer	nts
	8	B1		
	$\frac{1}{0.4} \text{ or } \frac{10}{4} \text{ or } 2.5$ or $\frac{1}{\frac{2}{5}} \text{ or } \frac{5}{2} \text{ or } 2\frac{1}{2}$ $8 \times 0.4 \text{ or } 3.2 \text{ implies B}$ $16:5 \text{ or equivalent ratio}$			
	3.2:1 or $\frac{16}{5}$:1 or $3\frac{1}{5}$:1	A1ft	ft B0M1	
	Additional Guidance			
11	8^3 = 512 or $8 \times 8 \times 8 = 512$ alone is not sufficient for B1			
	ft answers must have n exact or correctly rounded to at least 2 sf			
	eg $\sqrt{512}$ = 22.62 (incorrect and trui	В0		
	2.5			M1
	9.05 : 1	A1ft		
	ft answer exact surd value			
	eg $\sqrt{512} = 16\sqrt{2}$			В0
	2.5			M1
	9.05:1 or $\frac{32}{5}\sqrt{2}:1$			A1ft

Question	Answer	Mark	Comments	
	Alternative method 1			
	280 ÷ 35 or 8	M1	oe eg 80 ÷ 10	
	(350 – 280) ÷ (40 – 35)		oe	
	or			
	70 ÷ 5	M1		
	or			
	14			
	6	A1		
	Alternative method 2			
	320		oe	
	or			
	350 – 320 or 30			
12	or	M1		
	350 - 280 and 320 - 280			
	or			
	70 and 40			
	(350 – 320) ÷ 5		oe	
	or			
	$(70-40) \div 5$	M1dep		
	or			
	30 ÷ 5			
	6	A1		
	Additional Guidance			
	Do not allow a misread from the grap	oh		
	Alt 2 40 must come from 320 – 280 a	and not 40	hours worked	_

Comments

Mark

	<u>l</u>			
13(a)	120 and 132 and 96 and 156 and states that 4 out of 5 would be above 100 or 8.3 and states that 4 out of 5 would be above 100 or 10.4 × 12 = 124.8 and states this is above 100 or the hypothesis is correct or median or mode = 10 and 10 × 12 = 120 and states that median or mode is above 100 or 52 × 12 (= 624) and 5 × 100 (= 500) and states 624 > 500	B2	B1 10 × 12 or 120 and 11 × 12 or 132 and 8 × 12 or 96 and 13 × 12 or 156 or 100 ÷ 12 or 8.3 or states that 4 out of 5 wo with no or incorrect eval or 10.4 × 12 = 124.8 or median or mode = 10 ar or 52 × 12 (= 624) and 5 ×	uations and 10 × 12 = 120
	Additional Guidance			
	'4 out of 5' is implied by 'most people'			B0
	(10 + 11 + 8 + 10 + 13) ÷ 5 = 10.4	$(10 + 11 + 8 + 10 + 13) \div 5 = 10.4$		
	52 × 12 or 624 alone			B0
13(b)	Any two correct reasons from The sample is biased The sample is too small They may not read at the same rate in other months	B2	oe eg people in book clubs eg she should ask a lot i eg that month may not b B1 any one correct reason	more people
	Additional Guidance			
	Add	itional G	Buidance	
	Add Needs to use data from more months		iuidance	B1

Question

Answer

Question	Answer	Mark	Comme	nts	
	$y = x^3 + 2$ or $a = 2$	M1	implied by at least two of identified or plotted from	n	
			(-3, -25), (-2, -6), (-1, (2, 10)	, 1), (0, 2), (1, 3),	
	At least five correct points identified or plotted for their value of <i>a</i>		correct points are		
14	or plotted for their value of u	M1	(-3, -25), (-2, -6), (-1, (2, 10) may be seen in a working		
	Seven correct points plotted and joined with a smooth curve	۸1	$\pm \frac{1}{2}$ square		
		A1	SC1 fully correct curve $-3 \le x \le 2$	for $y = x^3$ for	
	Additional Guidance				
	37 500 × 0.2 or 7500	M1			
	(9260 – their 7500) ÷ 0.4 or 1760 ÷ 0.4 or 4400	M1dep			
15	their 4400 + 37 500 + 12 500	M1dep	dep on M2		
	54 400	A1			
	Additional Guidance				
	Trial and improvement for any part o found	nly score	s if the correct value is		
	2 × 14 × 9 × 8	M1	oe		
	2016	A1			
46(-)	Add	itional G	Guidance		
16(a) -	2016 ÷ 4 = 504 penalise further work	ing after	2016 seen	M1A0	
	2 × 14 × 9 × 8 × 4 with 2016 not see	n		M0A0	
	$2 \times 14 \times 9 \times 8 \div 4$ with 2016 not see	n		M0A0	

Question	Answer	Mark	Commer	nts
	(1 ×) 14 × 9 × 6	M1	oe	
	756	A1		
40(1)	Add	ditional C	Guidance	
16(b)	756 ÷ 4 = 189 penalise further work	ing after 7	56 seen	M1A0
	756 × 4 = 3024			M1A0
	14 × 9 × 6 ÷ 4 with 756 not seen			M0A0
17	$(f(10) =) 3 \times 10^{2} - 4 \times 10 + 8$ or $(f(10) =) 300 - 40 + 8$ or $(f(10) =) 268$ or $(f(5) =) 3 \times 5^{2} - 4 \times 5 + 8$ or $(f(5) =) 75 - 20 + 8$ or $(f(5) =) 63$ or $(2f(5) =) 2 \times 63$ or 126	M1		
	268 and 126 and No	A1		
	Additional Guidance			
18	$-\frac{1}{7}$ and $\frac{3}{2}$	B1		

Question	Answer	Mark	Comments	
	$tan DBH = \frac{8}{13}$	M1	oe tan ⁻¹ 8/13	
	31.6	A1		
40(-)	Add	litional G	uidance	
19(a)	31.6 in working, 32 on answer line – correct rounding			M1A1
	31.6 in working, 31 on answer line – incorrect rounding			M1A0
	$\tan\frac{8}{13} \text{ or } \tan = \frac{8}{13}$			M0A0
	50.00	D46	5.00 H : 04.0	
	58.39 or 58.4	B1ft	ft 90 – their 31.6	
19(b)	Additional Guidance			
	Correct or follow through			
20	$\sqrt{2}$	B1		

Question	Answer	Mark	Comments	
	Alternative method 1			
	1125 ÷ 5 × 2 or 450	M1	oe	
	their 450 ÷ 6 × (7 ÷ 4) or 75 × 1.75 or 131.25	M1dep		
	1125 ÷ their 131.25	M1dep		
	8.57 or 8.6 or $8\frac{4}{7}$ or 8	A1		
	Alternative method 2			
	5 ÷ 2 or 2.5 and 7 ÷ 4 or 1.75	M1	oe	
21	their 2.5 ÷ their 1.75 or 1.42857 or $\frac{10}{7}$	M1dep	oe	
	6 × their 1.42857	M1dep		
	8.57 or 8.6 or $8\frac{4}{7}$ or 8	A1		
	Alternative method 3			
	(Small bottle fills) $6 \times \frac{4}{7}$ or $\frac{24}{7}$	M1		
	(Large bottle fills) their $\frac{24}{7} \times \frac{5}{2}$ or $\frac{120}{14}$	M1dep		
	their 120 ÷ their 14	M1dep		
	8.57 or 8.6 or $8\frac{4}{7}$ or 8	A1		

Mark scheme for Question 21 continues on next page

Question	Answer	Mark	С	omments	
	Alternative method 4				
	Any two of $b_1 = 6g_1$ and $b_2 = 2.5b_1$ and $g_2 = 1.75g_1$	M1	=	small bottle (b_1) , small pottle (b_2) and large glass	
	$b_2 = 2.5 \times 6g_1 \text{ or } b_2 = 15g_1$	M1dep	oe		
21 cont	$b_2 = \text{their } 15\left(\frac{g_2}{1.75}\right)$	M1dep			
	8.57 or 8.6 or $8\frac{4}{7}$ or 8	A1			
	Additional Guidance				
	If the student attempts more than on method and award the highest mark	e method	d, mark each		
	Correct answer seen in working, 9 or	n answer I	ine	M1M1M1A0	

Answer	Mark	Comments	
Alternative method 1			
$(x-5)^2$ or $(5-x)^2$ or $x^2-10x+25 (=0)$ or b=-10 or c=25	M1		
b = -10 and $c = 25$	A1		
Alternative method 2 – using $b^2 - a$	1ac		
$b^{2}-4 (\times 1) \times c = 0$ or $b^{2}-4 (\times 1) \times (-25-5b) = 0$ or $b^{2}+100+20b=0$ or $(b+10)^{2}=0$	M1		
b = -10 and $c = 25$	A1		
Add	ditional G	Guidance	
Do not allow $c = 25 \text{ from } (x + 5)^2 \text{ or } (5 + x)^2$			
	Alternative method 1 $(x-5)^2 \text{ or } (5-x)^2$ or $x^2 - 10x + 25 (= 0)$ or $b = -10$ or $c = 25$ Alternative method $2 - u sing b^2 - 4$ $b^2 - 4 (\times 1) \times c = 0$ or $b^2 - 4 (\times 1) \times (-25 - 5b) = 0$ or $(b+10)^2 = 0$ $b = -10 \text{ and } c = 25$ Additional set in the proof of th	Alternative method 1 $(x-5)^2 \text{ or } (5-x)^2$ or $x^2-10x+25 (=0)$ or $b=-10$ or $c=25$ A1 Alternative method $2-u\sin b^2-4ac$ $b^2-4 (\times 1) \times c=0$ or $b^2-4 (\times 1) \times (-25-5b)=0$ or $(b+10)^2=0$ $b=-10 \text{ and } c=25$ A1 Additional G	

Question	Answer	Mark	Commer	nts
23	3 8	B1		
	Enlargement	B1		
	Scale factor (×) $-\frac{1}{2}$	B1	oe	
	Centre (1, -1)	B1		
	Additional Guidance			
24	Enlarge (×) $-\frac{1}{2}$ (1, -1)			B1B1B1
	'Reduces' or 'gets smaller' or 'shrinks	s'		1st B0
	Do not accept $\div \left(-\frac{1}{2}\right)$ for scale factor	or	2nd B0	
	Centre 1,-1			3rd B0
	Combined transformation given			B0B0B0

Question	Answer	Mark	Comments
	Alternative method 1		
	Correct method to work out any viable distance, eg		
	$\frac{1}{2} \times \frac{5}{60} \times 102$ or 4.25		first section
	or		
	$102 \times \frac{40}{60}$ or 68		second section
	or $\frac{1}{2}(102+96) \times \frac{15}{60} \text{ or } 96 \times \frac{15}{60}$ and $\frac{1}{2} \times 6 \times \frac{15}{60}$ or 24 and 0.75 or 24.75	M1	third section
25	or $\frac{1}{2} \left(\frac{40}{60} + \frac{45}{60} \right) \times 102 \text{ or } 72.25$		first and second sections
	Correct method to work out all parts of distance, eg		97 scores M1M1
	$\frac{1}{2} \times \frac{5}{60} \times 102 \text{ or } 4.25$ and $102 \times \frac{40}{60} \text{ or } 68$ and $\frac{1}{2}(102 + 96) \times \frac{15}{60} \text{ or } 24.75$	M1dep	
	130 – their whole distance		eg
	or 130 – 97	M1dep	130 – their 4.25 – their 68 – their 24.75 dep on M2
	33	A1	

Mark scheme for Question 25 continues on the next page

Question	Answer	Mark	Comments
	Alternative method 2		
	Correct method to work out 60 × any viable distance, eg		
	$\frac{1}{2} \times 5 \times 102$ or 255		first section
	or		
	102 × 40 or 4080		second section
	or	M1	
	$\frac{1}{2}(102+96) \times 15$ or 96×15 and	1011	third section
	$\frac{1}{2}$ × 6 × 15 or 1440 and 45 or 1485		
	or		
	$\frac{1}{2}(40 + 45) \times 102$ or 4335		first and second sections
25 cont	Correct method to work out 60 × all parts of distance, eg		5820 implies M1M1
	$\frac{1}{2} \times 5 \times 102$ or 255		
	and	M1dep	
	102 × 40 or 4080		
	and		
	$\frac{1}{2}(102 + 96) \times 15$ or 1485		
	130 – their whole distance		eg
	or $130 - \frac{5820}{60}$	M1dep	130 – their 255 + their 4080 + their 1485 60
	or 130-97		dep on M2
	33	A1	
	Add	litional G	uidance
	Accept fractions used as decimals co	orrect to 2	dp or better

Question	Answer	Mark	Comments		
	$\frac{1}{2} \times 9.7 \times 3.8 \times \sin 73^{\circ} \text{ or } 17.6$	M1	oe		
	their 17.6 × 6 ÷ 8.5 or 105.7 ÷ 8.5 or 12.4	M1dep	oe		
26(a)	13	A1			
	Ado	litional G	uidance		
	$\frac{1}{2} \times 9.7 \times 3.8 = 18.43 18.43 \times 6 \div 8$	8.5 = 13.0.		M0M0A0	
	$9.7^2 + 3.8^2 - 2 \times 9.7 \times 3.8 \times \cos 73^\circ$ or $94.09 + 14.44 - 73.72 \cos 73^\circ$ or 86.976 or 86.98 or 87	M1	oe		
	$\sqrt{\text{their }86.976}$	M1dep			
	9.3(2) or 9.33	A1			
26(b)	$\frac{\sin x}{\text{their 9.32}} = \frac{\sin 42}{8}$ or $\sin^{-1}[0.7778, 0.7804]$	M1	oe their 9.32 must be th vertical line	eir length of the	
	[51, 51.3]	A1ft	ft their 9.3(2) or 9.33	3	
	Additional Guidance				
	Their 9.32 must come from M1M1 or on the diagram as the length of the				

Question	Answer	Mark	Comments
	(PQ =) a + b + c	M1	oe
	$(XY =) \frac{2}{3}\mathbf{a} + \mathbf{b} + \frac{2}{3}\mathbf{c}$ or $(XY =) -\frac{1}{3}\mathbf{a} + \mathbf{a} + \mathbf{b} + \mathbf{c} - \frac{1}{3}\mathbf{c}$	M1	
27	$(PQ =) \mathbf{a} + \mathbf{b} + \mathbf{c}$ and $(XY =) \frac{2}{3} \mathbf{a} + \mathbf{b} + \frac{2}{3} \mathbf{c}$ and No, as XY is not a multiple of PQ	A1	ое
	Additional Guidance		

Question	Answer	Mark	Commer	nts
	$\frac{y+3}{2} = x$ or $x = 2y - 3 \text{ and } x + 3 = 2y$ or $2x - 3 = 55$	M1		
28	$\frac{x+3}{2}$ or $\frac{55+3}{2}$	A1		
20	$2x^{2}-3$ or $2 \times 4^{2}-3$ or $2 \times 16-3$	M1		
	$\frac{55+3}{2} = 29$ and $2 \times 4^2 - 3 = 29 \text{ or } 2 \times 16 - 3 = 29$	A1		
	Ado	litional G	Guidance	
	29 with no working or only from incor	rect work	ing	M0A0M0A0