edexcel "

Mark Scheme (Results)

January 2012

International GCSE Chemistry (4CH0)
Paper 1C
Science Double Award (4SC0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844576 0025, our GCSE team on 08445760027 , or visit our qualifications website at www.edexcel.com. For information about our BTEC qualifications, please call 08445760026 , or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Pearson about Edexcel qualifications on our dedicated Science telephone line: 08445760037

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2012
Publications Code UG030278
All the material in this publication is copyright
© Pearson Education Ltd 2012

I NTERNATI ONAL GCSE CHEMI STRY 4CHO 4SCO / 1C - JANUARY 2012

Question number				Answer	Notes	Marks
1	a		M1M2M3M4M5M6	beaker water glass rod funnel conical flask water	Accept phonetic spellings	1
						1
						1
						1
						1
						1
	b	i	M1	(filter) paper	Accept phonetic spellings Ignore alternatives to filter, such as kitchen / chromatography the essential word is paper	1
		ii	M1	sand	Accept phonetic spellings	1
	C		$\begin{aligned} & \hline \text { M1 } \\ & \text { M2 } \end{aligned}$	$\begin{aligned} & \text { cross in box } 4 \\ & \text { cross in box } 5 \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Total 10 marks

Question number				Answer	Notes	Marks
2	a	ii	M1 M1 M2	```(hydrated) iron(III) oxide / Fe2O oxygen / O water / H2O```	Allow (hydrated) iron oxide and $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$ Allow air Do not accept O Accept poorly written formulae such as H 2 O and O^{2} Accept phonetic spellings Answers can be in either order Reject salt / acid - eg salt water does not score	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
	b		M1	cross in box 4 (oxidation)		1
	C	ii	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \end{aligned}$	Zinc / Zn cross in box 2 (Bucket)	Accept phonetic spellings	1 1
	d		$\begin{aligned} & \hline \text { M1 } \\ & \text { M2 } \end{aligned}$	oiling / greasing / painting / covering with plastic / coating with tin or named metal (aluminium or below) in reactivity series / attaching magnesium or zinc blocks (to ships)	Any two for 1 each Ignore sacrificial protection and galvanising and alloying	2

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { Questio } \\
n \\
\text { numbe } \\
r
\end{gathered}
\]} \& \& Answer \& Notes \& Marks \\
\hline 3 \& a \& \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M2 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{NH}_{4}{ }^{+} \\
\& \mathrm{Cl}^{-}
\end{aligned}
\] \& \begin{tabular}{l}
Award 1 if wrong way around \\
Penalise missing charges both times
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline \& b \& i

ii \& \begin{tabular}{l}
M1

M2

M3

M1

M2

M3

 \&

(add) sodium hydroxide/ NaOH (solution) (and warm)

test (gas / ammonia) with (damp red) litmus (paper)

OR

test with hydrogen chloride / conc HCl

(litmus paper) turns blue

OR

white smoke/solid/powder

(add) silver nitrate/ AgNO_{3} (solution) (dilute) nitric acid

white precipitate / solid / suspension

 \&

Accept any identified Group 1 or Group 2 hydroxide

If no reagent added, max 1 mark for correct test AND result even if dipped into solution If just hydroxide or OH^{-}ions, do not award M1 but continue marking

If any other incorrect reagent added, then 0/3 Accept use of universal indicator Accept holding litmus above tube etc Reject blue litmus for M2 and M3 Do not penalise ammonium instead of ammonia in M2

Do not allow (dilute) hydrochloric acid Do not award M3 if litmus dipped into solution (even if only implied)

If missing or incorrect reagent, $0 / 3$ Do not accept any other acid or just acidified If acid missing or wrong, M3 can still be awarded If bleaching litmus paper mentioned, only M1 can be awarded

 \&

1

1

1

1
1

1
\end{tabular}

\hline
\end{tabular}

$\begin{array}{c\|} \hline \text { Questio } \\ \mathbf{n} \\ \text { numbe } \\ \mathbf{r} \end{array}$				Answer	Notes	Marks
3	c		M1	reversible / goes both ways	Ignore equilibrium	1
	d	i ii	M1	ammonium chloride / $\mathrm{NH}_{4} \mathrm{Cl}$ ammonia / NH_{3} / molecules / they / it are / move / diffuse / travel faster / quicker	Do not accept ammonia chloride If name and formula given, both must be correct Ignore descriptions such as lighter / smaller / denser Accept phonetic spellings including amonia / ammonium Do not accept hydrogen chloride / hydrochloric acid / $\mathrm{HCl} /$ ammonium chloride / $\mathrm{NH}_{4} \mathrm{Cl}$ in place of ammonia Accept all other words with same meaning as faster - eg speedier Do not accept react faster or travel further Accept reverse statements such as hydrogen chloride slower	1 1
	e		$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	Corrosive / burns / damages skin or eyes Wear eye protection eg goggles or mask / gloves / place bung in the end of the tube / use of fume cupboard	Ignore harmful / irritant / toxic / poisonous Allow tongs / tweezers if reference to cotton wool Ignore lab coats M1 and M2 are independent	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Total 11 marks

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question number} \& \& Answer \& Notes \& Marks \\
\hline 4 \& a \& ii \& \begin{tabular}{l}
M1 \\
M1
\end{tabular} \& \begin{tabular}{l}
bubbles / fizzing / effervescence OR solid/magnesium disappears/dissolves OR flask gets warm \\
magnesium chloride / \(\mathrm{MgCl}_{2}\)
\end{tabular} \& \begin{tabular}{l}
Allow just gas (given off) \\
Ignore wrongly named gas \\
Allow temperature increases but not heat produced \\
Accept phonetic spellings \\
Accept poorly written formulae such as \(\mathrm{MGCl}_{2}\) and \(\mathrm{MgCL}_{2}\)
\end{tabular} \& 1

1

\hline \& b \& ii \& | M1 |
| :--- |
| M2 |
| M1 | \& | $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ |
| :--- |
| condensation | \& | correct formulae $=1$ balancing $=1$ Ignore heat anywhere Ignore state symbols |
| :--- |
| Accept phonetic spellings | \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\]

$$
1
$$

\hline \& c \& i \& M1 \& blue \& | Do not accept any other colours even in combination with blue, eg blue-green |
| :--- |
| Accept phonetic spellings Ignore qualifiers such as pale / dark / light Ignore mention of solution / liquid / solid | \& 1

\hline
\end{tabular}

Question number		Answer	Notes	Marks	
4	c	ii	M1	measure boiling point / melting/freezing point OR distil / boil / freeze $100 \mathrm{OC} / \mathrm{O} \mathrm{O} \mathrm{C}$	Ignore heat and cool

Total 8 marks

Question number				Answer	Notes	Marks
5	a	i	M1	S	Accept diagram:	1
		ii	M1	T/U	Accept diagrams:	1
		iii	M1	T/U	Accept diagrams: Do not penalise if both T and U are given Do not award the mark if either or both of T or U is given and any other letter is included	1

Question number				Answer	Notes	Marks
5	b		M1 M2	(add) bromine (water) decolourised / goes colourless	If bromide, then 0/2 Do not allow bromine in UV light, but M2 can be awarded Ignore starting colour of bromine Ignore clear / discolours Reject bleached	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	c		M1	displayed formula of but-1ene, but-2-ene or methylpropene	All atoms and bonds must be shown Allow dienes	1
	d	i	M1	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$	Accept x and other letters in place of n Accept answers like $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}+2$ Ignore brackets	1
		ii	M1 M2 M3 M4	same/similar chemical properties / reactions / behaviour / characteristics gradation /gradual change / trend / increase / decrease of physical properties (neighbouring members) differ by CH_{2} same functional group	Ignore specific example such as react with oxygen Ignore similar (type of) reactivity Accept reference to specific property, eg boiling point Reject same / similar physical properties Any two for 1 each Accept two answers on one answer line	2

Question number		Answer	Notes	Marks	
5	e	M1	(compounds / molecules with) same molecular formula / same number of each type of atom different structures / structural formulae / atoms arranged differently / different displayed formulae	Ignore same chemical formula Ignore hydrocarbons If atoms or elements instead of compounds or molecules, max 1 for Q	1

Question number				Answer	Notes	Marks
6	a	i	M1	$\mathrm{H}-\mathrm{O}-\mathrm{H}$ with both bonds represented by 2 shared electrons	Accept 2 dots, 2 crosses or 1 of each Atoms do not have to be labelled with H or O If wrongly labelled, only M1 can be awarded	1
			M2	8 electrons in outer shell of O AND 2 electrons in outer shell of both H	I gnore inner shell of O Reject if H has 2 shells M2 dependent on M1	1
		ii	M1	(strong electrostatic) attraction between bonding/shared pair of electrons	Must refer to pair or two electrons	1
			M2	and nuclei (of hydrogen and oxygen)	Accept word nucleus instead of nuclei if clear reference to 2 atoms $0 / 2$ if any mention of ions / electron transfer M2 dependent on mention of both attraction and electrons in M1	1

Question number			Answer	Notes	Marks
6	b	i	M1	idea of electron transfer / loss and gain of electrons	M2direction of transfer, eg sodium to oxygen / sodium loses and oxygen gains correct number of electrons involved, eg (each) sodium loses 1 and oxygen gains 2
		Ignore charges on ions Ignore covalent $0 / 3$ if any mention of electron sharing All marks may be scored on diagrams or by reference to electronic configurations Max 2 if molecules mentioned Ignore oxygen gains electrons	1		

Question number			Answer	Notes	Marks
6	c		M 1	attractions between water molecules are weak(er) / easily overcome / need little energy to break attractions between (sodium and oxide) ions are strong(er) / ionic bonds are strong /need a lot of energy to break	Allow (named) intermolecular forces in place of attractions

Question number				Answer	Notes	Marks
7	a	i	$\begin{array}{l\|} \hline \mathrm{M} \\ 1 \end{array}$	Chlorine / / Cl_{2}	Allow Cl Accept phonetic spellings Do not penalise poorly written formulae such as $\mathrm{CL} / \mathrm{cl} / \mathrm{cL}$	1
			$\begin{aligned} & M \\ & 2 \end{aligned}$	Iodine / I_{2}	Allow I Accept phonetic spellings	1
		ii	$\begin{gathered} M \\ 1 \end{gathered}$	Astatine / At ${ }_{2}$	Allow At Accept phonetic spellings Do not penalise poorly written formulae such as AT / at / aT	1
	b		$\begin{aligned} & \hline \mathrm{M} \\ & 1 \\ & \mathrm{M} \\ & 2 \end{aligned}$	$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$	correct formulae $=1$ balancing $=1$ Max 1 for symbol or formula error, eg HcL, Cl ${ }^{2}$	1 1

Question number		Answer	Notes	Marks	
7	C	i	M1 M2	red (hydrochloric) acid / hydrogen ions / H^{+} (formed) ii	M1
blue	Ignore acidic and references to pH	1			

Total 9 marks

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question number} \& \& Answer \& Notes \& Marks

\hline 8 \& a \& \& M1 \& exothermic \& Accept phonetic spellings Do not accept endothermic or any spelling that could be taken as endothermic or a hybrid such as exdothermic \& 1

\hline \& b \& i

ii

iii \& \begin{tabular}{l}
M1

M2

M3

M4

M5

M6

M1

M2

M3

M1

M2

 \&

volume of solution concentration (of solution) amount / mass of metal same surface area of metal

same (rate/time of) stirring same starting/initial temperature

18.7(0)

26.8(0)

8.1(0)

Zn / zinc

X

 \&

Allow amount of solution

Allow quantity of metal

Allow same size pieces / same state of subdivision

Ignore references to room temperature

Any two for 1 each

Conseq on M1 and M2

Accept phonetic spellings

\end{tabular} \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \\
& \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$
\]

\hline
\end{tabular}

$\begin{array}{c}\text { Question } \\ \text { number }\end{array}$		Answer	Notes	Marks			
8	c		M 1	$\mathrm{Zn}+\mathrm{XSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{X}$	Ignore state symbols	$]$	1
:---							
d							
d							

| Question
 number | | | Answer | Notes |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |

Question number				Answer	Notes	Marks
9	b		$\begin{aligned} & \text { M1 } \\ & \text { M2 } \\ & \text { M3 } \end{aligned}$	$\begin{aligned} & n\left(N_{2}\right)=\left(56 \times 10^{6}\right) \div 28 / 2 \times 10^{6} \\ & n\left(N_{3}\right)=M 1 \times 2 / 4 \times 10^{6} \\ & m\left(N_{3}\right)=M 2 \times 17 / 68 t(\text { onnes }) \end{aligned}$ OR 34×56 $=68 \mathrm{t}$ (onnes)	No penalty for missing or incorrect power of 10 Conseq on M1 Conseq on M2 Correct final answer with units scores 3 Accept answers in grams and kilograms 34 t scores 2 marks Final answer of 68 with missing or incorrect units scores 2 M1 for 28 and 34 (need not be in this expression) M2 is for expression shown M3 is for answer with units	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
	c	(i) (ii)	M1 M2 M1 M2	increased shift to left shift to right fewer moles/molecules (of gas) on the right	Allow less ammonia / products Allow moves in reverse direction Ignore reference to favouring Allow more ammonia / products Allow moves in forward direction Ignore reference to favouring Allow more moles/molecules on the left Do not penalise incorrect numbers, eg 3 moles on the left and 2 moles on the right Ignore references to rate M2 dependent on M1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question number				Answer	Notes	Marks
10	a	i	M1	layers / sheets / planes / rows of (positive) ions	Allow atoms/ particles in place of positive ions Reject molecules / protons / electrons	1
			M2	slide (over each other)	Allow slip / flow / move in place of slide Accept explanation in terms of nondirectional bonding Do not award M2 if protons / electrons Do not award M2 if no mention of layers or equivalent	1
		ii	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	delocalised electrons / sea of electrons move / flow (through structure) / mobile (when voltage/potential difference applied)	Ignore free electrons M2 needs mention of electrons Any mention of ions moving $=0 / 2$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question number				Answer	Notes	Marks
10	b	i	M1	green precipitate	Accept solid / suspension Ignore qualifiers such as pale / light / dark / muddy / dirty I gnore grey Ignore references to turning brown Reject bubbles or equivalent Do not penalise wrong identity of precipitate	1
			M2	brown precipitate	Accept solid / suspension Accept orange / orange-brown / redbrown Ignore qualifiers such as pale / light / dark Reject bubbles or equivalent Do not penalise wrong identity of precipitate Award 1 for both colours correct but precipitate missing	1
		ii	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	$\mathrm{FeSO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}$	$\begin{aligned} & \text { Correct formulae = } 1 \\ & \text { Balancing }=1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question number				Answer	Notes	Marks
11	a		M1	(total) volume different/not constant / not 50 / is 55	Allow too much water / sodium thiosulfate added / reference to numbers eg should be 10 instead of 15 or 35 instead of 40	1
	b		$\begin{aligned} & \hline \text { M1 } \\ & \text { M2 } \\ & \text { M3 } \end{aligned}$	All six points plotted correctly to nearest gridline curve of best fit	Deduct 1 mark for each error If plotting cannot be seen judge accuracy from the line. Do not award mark for joining dots or multiple lines or if all of the data points are completely misplotted	$\begin{aligned} & 2 \\ & 1 \end{aligned}$
	c		$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	$\begin{aligned} & 1000 \div 26.6 \\ & 37.6 \end{aligned}$	Ignore units M2 can be awarded for use of another student's result Award 2 marks for correct final answer Award 1 mark for 38 / 37.59 / 37.5	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question number				Answer	Notes	Marks
11	d	i	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	rate (directly) proportional to concentration	Accept concentration (directly) proportional to rate Accept specific quantitative expression, eg rate doubles as concentration doubles Allow 1 mark for qualitative expression, rate increases as concentration increases	2
11	d	ii	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \\ & \text { M3 } \end{aligned}$	more particles / ions (in a given volume) collide (successfully) more frequently	Reject atoms / molecules Reject with more energy Ignore greater chance of collision Must be reference to frequency or number of collisions per unit time Allow "increased frequency of collisions" for M2 and M3	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code xxxxxxxx J anuary 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

