edexcel 쁯

Mark Scheme (Results)
January 2014

International GCSE
Chemistry (4CH0) Paper 1C
Science Double Award (4SC0) Paper 1C
Edexcel Level 1/Level 2 Certificates Chemistry (KCHO) Paper 1C
Science (Double Award) (KSC0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

January 2014
Publications Code UG037642
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Accept	Reject	Marks
1	M1 dissolve		1	
	M2 solution		1	
	M3 evaporate		1	
	M4 crystals		1	
	M5 filter			1
			Total	$\mathbf{5}$

Question number	Answer	Accept	Reject	Marks
2 (a)	X boiling Y condensing Z freezing			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(b)	C The particles move freely.			1
(c) (i) (ii) (iii)	thermometer it/water boils at $100^{\circ} \mathrm{C}$ OR it/water boils below the melting point of (solid) Q / 140으 / boils before Q melts I GNORE evaporates to keep the liquid at an even/equal temperature (throughout) OR to avoid the bottom of the liquid from overheating/the bottom getting hotter than the rest of the liquid/to evenly distribute the heat/to avoid hot spots IGNORE references to increasing movement, etc of particles	water does not get hotter than $100 \div \mathrm{C}$ reverse argument OWTTE	words that imply constant temperature, eg steady	1 1 1
			Total	7

Question number	Expected Answer	Accept	Reject	Marks
3 (a)(i)	nitrogen and oxygen IGNORE formulae whether right or wrong			1
(ii)	argon IGNORE formula whether right or wrong			1
(b)	Any one from: - manufacture of ammonia/in the Haber process - food packaging/preservative - aircraft tyres - (in) light bulbs - coolant/refrigerant/freezing agent - treatment of warts			1
(c)	Any one from: - sulfur dioxide - nitrogen monoxide - nitrogen dioxide - dinitrogen tetr(a)oxide - oxide(s) of nitrogen If both a name and a formula are given, IGNORE the formula I GNORE carbon dioxide	nitrogen oxide a correct formula	any other gas	1

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
(d) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
iron + oxygen (+ water) \(\rightarrow\) (hydrated) iron (III) oxide \\
M1 Ihs \\
M2 rhs \\
M1 volume of oxygen \(=80-63 / 17\left(\mathrm{~cm}^{3}\right)\) \\
M2 percentage \(=\left(\frac{18}{89} \times 100\right) / 21\) \\
OR \(\frac{\text { M1 }}{80} \times 100\) correctly evaluated \\
21 with no working scores 1 \\
78.75/78.8/78.7 with no working scores 1 \\
\(\frac{89}{80} \times 100=79\) scores 1 \\
79 with no working scores 0
\end{tabular} \& ferric oxide/iron oxide correct chemical equation M1 all formulae correct M2 balanced
\[
21.25 \text { / 21.3/21.2 }
\] \& any other oxidation state \& 2

1

\hline (e) \& | (whether it/the height / the measurement is) the same as before |
| :--- |
| I GNORE references to iron had stopped rusting | \& no change \& \& 1

\hline \& \& \& Total \& 9

\hline
\end{tabular}

Question number	Answer	Accept	Reject	Marks
4 (a) (i) (ii) (iii)	the (orange) colouring dissolves in ethanol / does not dissolve in water OR the (orange) colouring is more soluble in ethanol (than water) OR ethanol is a better solvent (than water) I GNORE petals dissolve water bath / electric heater / isomantle filter / decant / pour off the liquid	description of water bath hot water/steam use a sieve		1 1 1
(b)	M1 2 spots/dots/circles drawn at different heights above the original orange spot and below the solvent front M2 one spot labelled red AND one spot labelled yellow	one spot level with the orange spot		1 1
			Total	5

Question number	Answer	Accept	Reject	Marks
5 (a)	A - (tap) funnel B - (conical) flask C - (gas) jar	burette measuring cylinder		1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$
(b)	M1 (limewater) goes milky/chalky/cloudy OR (white) precipitate/solid/suspension (formed) M2 (mixture) goes clear OWTTE (eg cloudiness disappears) I GNORE bubbles	ppt solid dissolves OWTTE colourless solution (formed)	colours other than white	1 1
(c)	more dense than air/oxygen	poor conductor of electricity	just heavier than air	1
(d)	C weakly acidic			1
			Total	7

Question number	Answer	Accept	Reject	Mark s
6 (a)	M1 $\mathrm{C}_{6} \mathrm{H}_{14}$ M2 58 M3 any value in the range 25 to 45			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(b)	boiling point/it increases as M_{r} increases	reverse argument positive correlation as one increases the other increases	directly proportional	1
(c)	different general formulae / OR (general) formula of ethene is not $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} /$ (general) formula of ethane is not $\mathrm{C}_{n} \mathrm{H}_{2 n}$ OR use of/ mention of displayed formulae to show/indicate double (C to C) bond in ethene and single (C to C) bond in ethane	same number of carbon atoms but different number of hydrogen atoms	just different number of hydrogen atoms	1
(d) (i) (ii)	M1 M2 penailse one missng H or one missing bond once only accept answers in either order (structural) isomer(s)	isomerism		1 1 1

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
6 (e) (i) \\
(ii) \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr} \\
\& \mathbf{M 1}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} \\
\& \mathbf{M 2}-\text { rest of equation correct } \\
\& \mathbf{M 2} \text { dep on } \mathbf{M 1} \\
\& \text { I GNORE state symbols } \\
\& \text { substitution } \\
\& \text { ultraviolet/uv (radiation) }
\end{aligned}
\] \& \begin{tabular}{l}
further substituted formula structural or displayed formulae \\
bromination/halogenation \\
uv light \\
sunlight
\end{tabular} \& light on its own \& 2

1
1

\hline \& \& \& Total \& 12

\hline
\end{tabular}

Question number	Answer	Accept	Reject	$\begin{gathered} \hline \text { Mark } \\ \mathrm{s} \\ \hline \end{gathered}$
7 (a)	releases thermal energy	releases heat (energy) produces an increase in temperature	just releases energy	1
(b)				1
(c)				1
(d)	M1 (consists of) positive AND negative/oppositely charged ions $/ \mathrm{Mg}^{2+}$ AND O^{2-} (ions) I GNORE references to loss and gain of electrons M2 (strong) attraction between (positive AND negative/ oppositely charged) ions $/ \mathrm{Mg}^{2+}$ AND O^{2-} (ions) M3 many ions (present in lattice)/giant structure/ giant lattice M4 large amount of energy required (to separate the ions/overcome the attraction between the ions) If mention of covalent bonds/metallic bonds/intermolecular forces only M4 can be awarded	(strong) ionic bonding/(strong) ionic bonds break the ionic bonding/bonds		4
7 (e)	M1 (name) magnesium chloride M2 (formula) MgCl_{2} Penalise inappropriate use of upper or lower case letters or numbers in the wrong place	accept a correct formula as a product in an equation whether the equation correct or not		1 1
			Total	9

Question number	Answer	Accept	Reject	Marks
8 (a)	M1 electronic configuration / 2.1, 2.8.1, 2.8.8.1 M2 same number of electrons in outer shell / one electron in outer shell OR the number of electrons in the outer shell determines the chemical properties	electronic structure / arrangement of electrons		1 1
(b)	melting point / melting temperature			1
(c) (i) (ii) (iii)	burns with a pop/squeak (when mixed with air and ignited) s l aq g M1 turns blue I GNORE purple M2 alkaline solution formed/alkali formed/hydroxide ions formed/LiOH is an alkali/LiOH forms hydroxide ions I GNORE references to lithium hydroxide is a metal hydroxide M2 dep on M1 correct or missing	use burning/lit spill / flame to see if pop/squeak splint for spill capital letters OH^{-}for hydroxide ions pH is greater than 7	glowing spill just ‘squeaky pop test'	1 1 1 1

\begin{tabular}{|c|c|c|c|c|}
\hline (d) \& \begin{tabular}{l}
Similarities - any two from: \\
- floats \\
- moves around \\
- fizzes/effervesces/bubbles/produces gas/produces hydrogen \\
- disappears/dissolves \\
- forms a solution \\
Differences - any two from: \\
Potassium: \\
- more vigorous/move around faster/reacts faster/fizzes more/explodes \\
- flame (IGNORE colour)/ catches fire \\
- forms a ball/bead/melts
\end{tabular} \& \begin{tabular}{l}
forms an alkali/forms a hydroxide \\
react vigorously \\
exothermic/gives out heat \\
reverse arguments for lithium \\
comparison between the two, eg only potassium catches fire, they react at different rates
\end{tabular} \& \& 2 \\
\hline \begin{tabular}{l}
\(8 \quad\) (e) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
4 \mathrm{Li}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}
\] \\
I GNORE state symbols \\
M1 formulae \\
M2 balancing \\
M2 dep on M1 \\
2 (1) (1)
\end{tabular} \& \begin{tabular}{l}
multiples and halves \\
multiples and halves
\end{tabular} \& \& 2

1

\hline \& \& \& Total \& 14

\hline
\end{tabular}

| Question
 number | Answer | Accept | Reject |
| :---: | :--- | :--- | :--- | :---: |
| 9 (b) | M1 (average kinetic) energy of particles/ions
 increases
 M2 more collisions/particles/ions have energy 2
 activation
 energy
 M3 more (successful) collisions per second / more
 frequent
 (successful) collisions
 IGNORE references to chance of collisions
 Penalise reference to molecules once only | particles move faster | molecules/atoms (but
 once only) |

Question number	Answer	Accept	Reject	Marks
10 (a)	initial final changes 16 17 $(+) 1$ 16 19 $(+) 3$ 16 21 $(+) 5$ M1 \& M2 all 6 temperature readings correct deduct one mark for each incorrect value M3 all 3 temperature changes correct Mark M3 csq on temperature readings			$\begin{aligned} & 2 \\ & 1 \end{aligned}$
(b)	M1 (the smaller the chips the) larger the (total) surface area M2 more (thermal) energy (is transferred to the water)	heat for thermal energy faster reaction reverse argument for experiment 1		1 1
(c)	M1 (it would be) lower M2 larger volume of liquid/more liquid to heat up (with same amount of thermal energy transferred) M2 dep on M1	water or acid in place of liquid		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
			Total	7

Question number	Answer	Accept	Reject	Marks
11 (a)	oxidised AND gain of oxygen IGNORE reference to loss of electrons	increase in oxidation number	gain of electrons	1
(b)	M1 it/magnesium is more reactive than titanium M2 it/magnesium has displaced titanium M2 dep on M1	reverse argument replaced		1 1
(c)	it/magnesium chloride has a different/lower boiling point I GNORE references to melting point	more volatile reverse argument		1
(d)	M1 (aircraft engines) - high strength-to-weight ratio M2 (hip replacements) - non-toxic M3 (propellers) - corrosion resistant no USE CAN BE GIVEN TWICE	high m.pt / corrosion resistant high strength-to-weight ratio / corrosion resistant	not corrosive not corrosive	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
			Total	7

Question number	Answer	Accept	Reject	Marks
(a) (i) (ii)	$\begin{array}{ll} \text { M1 } & \frac{0083}{24} \\ \text { M2 } & 0.004(0) \\ \text { M1 } & \frac{23(.0) \times 0,4(00)}{1000} \\ \text { M2 } & 0.01(00) \end{array}$	an answer of 10(.0) for 1 mark (i.e. failing to divide by 1000)		1 1
(b)	M1 0.004 mol of Mg react with 0.008 mol of HCl OR 0.01 is greater than $0.008 / \mathrm{M} 2$ from (a)(ii) is greater than $2 \times \mathbf{M 2}$ from (a)(i) M2 HCl is in excess M2 dep on M1 Mark csq on answers in (a)(i) and (a)(ii)	Mg and HCl react in a 1:2 ratio (by moles)		1 1
			Total	6

Question number	Answer	Accept	Reject	Marks
13 (a)	M1 air M2 natural gas / water/ hydrocarbons	atmosphere steam methane		1 1
(b)	M1 (temperature) 400 to $500{ }^{\circ} \mathrm{C}$ M2 (pressure) 150 to 250 atmospheres Units required, but allow one mark for both numbers correct with units missing M3 (catalyst) iron / Fe I GNORE references to promoters such as iron oxide	623 to 823 K atm / bar		1 1 1
(c)	nitric acid / nitric(V) acid		all other oxidation states	1
(d)	M1 $\mathrm{n}\left(\mathrm{NH}_{3}\right)=\frac{\frac{2 \mathrm{~B}(\mathrm{O}) \times 0.3 \mathrm{OQ})}{1000}}{17.5 \times 10^{-3}(\mathrm{~mol})}$ M2 $n\left(\mathrm{HNO}_{3}\right)=\frac{25(\mathrm{D}) \times 0.3(\mathrm{OD})}{1000} / 7.5 \times 10^{-3}(\mathrm{~mol})$ M3 conc. $\left(\mathrm{HNO}_{3}\right)=0.5(00)\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$ OR $\frac{M 2 \times 1090}{18}$ correctly evaluated Mark csq throughout correct answer with no working scores 3	other suitable methods, e.g. use of $\mathrm{V}_{1} \mathrm{M}_{1}=$ $V_{2} M_{2}$		1 1 1
			Total	9

Question number	Answer	Accept	Reject	Marks
14 (a)	Any two from: M1 both forward and backwards reactions are occurring M2 amounts/concentrations of reactants and products stay the same/pressure (of gas mixture) stays the same M3 rate of forward reaction = rate of backwards reaction	masses for amounts	are the same	2
(b) (i)	M1 increase M2 (forward) reaction is exothermic/gives out heat M2 dep on M1 I GNORE references to le Chatelier's principle and to reaction tries to decrease the temperature/equilibrium shifts to right	reverse reaction is endothermic	equilibrium shifts to left	1 1
(b) (ii)	M1 increase M2 fewer moles/molecules (of gas) on right (hand side) M2 dep on M1 I GNORE references to le Chatelier's principle and to reaction tries to decrease the pressure/equilibrium shifts to right	more molecules on left (hand side)	equilibrium shifts to left	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

(c) (i)	$2 \mathrm{CH}_{3} \mathrm{OH}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$ M1 formulae M2 balancing M2 dep on M1 I GNORE catalyst if on both sides or above arrow I GNORE state symbols	multiples and halves		2
(ii)	M1 - a substance that increases the rate of a reaction I GNORE alters the rate and any reference to enzymes M2 and is chemically unchanged (at the end of the reaction) IGNORE references to takes no part in the reaction	mass does not change without being used up		1 1
(iii)	M1 provides an alternative reaction path(way)/route/mechanism M2 (alternative path has a) lower activation energy [Activation energy can be described, e.g. the minimum energy needed (by colliding particles) for reaction to occur]	M1 molecules adsorb on/stick to the catalyst		1 1
	MAX 1 if any mention of particles gaining energy	M2 weakens the bonds in the reactant molecules		
(d)	$2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ M1 all formulae correct M2 balanced M2 dep on M1 I GNORE state symbols	multiples and halves correct equation for methanal for one mark		2
			Total	14

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2J E

