edexcel "

Mark Scheme (Results)
January 2014

International GCSE
Chemistry (4CHO) Paper 2C
Edexcel Level 1/Level 2 Certificates Chemistry (KCHO) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code UG037621
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number				Answer	Notes	Marks
1	a			cross in box C (neutrons and protons)		1
	b	i		6		1
		ii		14		1
	c			cross in box B (the numbers of electrons and protons are equal)		1
	d		M1	same number of protons / (they both have) 6 protons	Ignore references to electrons	1
			M2	different numbers of neutrons/ more neutrons	If number of extra neutrons specified, it must be 2 Rej ect different numbers of electrons	1
					Ignore references to atomic number and mass number	
	e			cross in box B (2.4)		1
TOTAL						7

Question number				Answer	Notes	Marks
2	a			bromine AND iodine	Accept symbols and formulae Do not accept names or formulae of ions	1
	b	i		hydrogen chloride	Ignore gas	1
				hydrochloric acid	Ignore aqueous / solution / dilute / concentrated	1
					Award 1 for both correct names in wrong places	
		ii	M1	white smoke/ solid/ cloud	Accept ring Reject precipitate Ignore powder / fumes	1
			M2	$\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$	Ignore state symbols	1
		iii	M1	white precipitate		1
			M2	aq s aq	Award 1 for s and 1 for both aq	2

Question number			Answer	Notes	Marks
2	C	i	hydrogen / H_{2}	Ignore H	1
		ii	becomes smaller / disappears	Accept dissolves Ignore references to bubbles	1
		iii	acidic / contains (hydrochloric) acid / hydrogen ions $/ \mathrm{H}^{+}$(ions)	Accept pH below 7 or any value below 7	1
		iv	not acidic / no (hydrochloric) acid (formed) / no hydrogen ions/ no H^{+}(ions) OR $\mathrm{HCl} /$ hydrogen chloride does not ionise / dissociate	Rej ect references to alkali(ne) or pH above 7 Ignore neutral Do not accept it/ hydrochloric acid in place of HCl	1
TOTAL					12

Question number				Answer	Notes	Marks
3	C	i	M1	$\frac{59.6 \times 184}{298}$	Award 1 for $n\left(\mathrm{WF}_{6}\right)=0.2 \mathrm{~mol}$ and any sight of 0.2	1
			M2	36.8 (g)	No ECF from incorrect expression except for transcription error - eg using 289 instead of 298 ECF from incorrect number of moles	1
					Award 2 for correct final answer	
		ii	M1	$\frac{47.5 \times 100}{52.0}$		1
			M2	91.3 \% $\%$	Accept any answer in range 91-91.4 Do not penalise excessive numbers of dp	1
					Award 2 for correct final answer	
TOTAL						14

Question number				Answer	Notes	Marks
4	e		M1	volume of alkali CQ on where lines cross	Accept answer to nearest gridline to $\min 1 d p$	1
			M2	maximum temperature CQ on where lines cross	Accept answer to nearest gridline to $\min 1 d p$	1
					Penalise missing dp once only If both values correct but in wrong order, award $1 / 2$ $0 / 2$ if lines do not cross	
	f	i	M1	0.650×0.025		1
			M2	0.01625 / 0.0163	16.25 scores $1 / 2$ Accept 0.016 and 0.0162	1
		ii	M1	0.0325	CQ on fi	1
		iii	M1	$\frac{0.0325 \times 1000}{0.500}$	CQ on fii	1
			M2	$65\left(\mathrm{~cm}^{3}\right)$	If M1 wrong because $\times 1000$ missing, then award M2 by ECF	1
					Penalise failure to use 1000 once only in i and iii Do not penalise rounding of intermediate answers and consequent final answer eg 65.2	
					If final answer obtained by use of $\underline{\underline{V}_{1} \underline{M}_{1}} \underline{n}_{1}=\underline{V_{2}} \underline{\underline{M}}_{2} \underline{M_{2}}$ both marks may be awarded in iii	
TOTAL						18

Question number				Answer	Notes	Marks
5	a			cross in box C (fractional distillation)		1
	b		M1	larger molecules in crude oil	Accept longer (chains)/ bigger M_{r} in place of larger Accept molecules in crude oil have wide range of sizes AND molecules in kerosene have similar sizes	4
			M2	more covalent bonds in crude oil (molecules) / bonds have different strengths	Accept no difference / same type of covalent bonding Reject references to double bonds in kerosene	
			M3	crude oil has higher viscosity	Accept less runny / less thick	
			M4	correct reference to other difference - eg crude oil darker colour crude oil harder to ignite crude oil burns with a smokier flame crude oil has a higher boiling point / wider range of boiling points		
					Any three points from four Accept converse statements for (molecules in) kerosene	
	C	i		$\mathrm{C}_{9} \mathrm{H}_{20}$	Accept $\mathrm{H}_{20} \mathrm{C}_{9}$	1
		ii		pentane		1
		iii			Ignore bond angles Ignore dot and cross diagram Ignore non-displayed formulae	1

Question number				Answer Notes		Marks
5	d		$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 2 \end{aligned}$		M1 for 4 correct atoms joined to 2 C atoms (ignore $\mathrm{C}=\mathrm{C}$ and extra atoms j oined to C) Accept Cl in any position of four MR for all 7 bonds correct provided that continuation bonds are shown but have no atoms attached Cl_{2} in place of Cl but otherwise correct scores M2 but not M1 Ignore brackets and any subscript	1 1
	e	i		(in condensation polymerisation) a small molecule/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl}$ is (also) formed / lost/ released OR two (different) monomers / more than one product	Accept converse statement for addition polymerisation eg (only) one product formed / no atoms are lost/ gained	1
					If no reference to type of polymerisation, assume that condensation is referred to	
		ii	M1	breakdown / decomposition	Ignore wear away / rot	1
			M2	by bacteria/ microbes/ micro-organisms	Accept biologically / naturally M2 dep on M1 or near miss	1
		iii		inert(ness)	Accept unreactive / non-polar Ignore strong bonds / long chains	1
TOTAL						13

