Mark Scheme (Results)

Summer 2013

International GCSE
Chemistry (4CH0) Paper 1CR
Science Double Award (4SC0) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG035595
All the material in this publication is copyright
© Pearson Education Ltd 2013

Question number	Answer	Accept	Reject	Marks
2 (a)	D			1
(b)	M1 before heating - colourless (solution/liquid) I GNORE clear/transparent/looks like water M2 after heating - milky/chalky/cloudy/white (precipitate)/turbid I GNORE references to goes clear OWTTE	no colour	white solution/liquid any colour other than white	1 1
(c)	M1 (sulfur dioxide/it) dissolves in/reacts with (rain) water M2 to form an acidic solution/an acid/sulfurous acid /acid rain I GNORE references to any other products whether correct or not M3 which reacts with/corrodes the marble/calcium carbonate IGNORE erodes / weathers / melts / eats into	$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ OR $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+$ $1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ for both M1 and M2 sulfuric acid chemical weathering dissolves correct equation for reaction with either sulfurous or sulfuric acid SO_{2} reacts with marble for M3 only		1 1 1
			Total	6

Question number	Answer				Accept	Reject	Marks
3 (a)							11
	Name of barium salt	Formula of barium salt	Solubility in water	Poisonous			
	barium chloride	BaCl_{2}					
	barium nitrate						
	barium carbonate	BaCO_{3}					
	barium sulfate						
(b)	M1 (it forms) ba M2 by reaction/	um chloride/B with hydrochlor	2/a soluble (bariu acid/stomach	m) salt	by neutralisation word or chemical equation for 2 marks (equation can be unbalanced)	any suggestion that barium chloride is reacting	1 1
(c)	barium sulfate/B	SO_{4}					1

\begin{tabular}{|c|c|c|c|c|}
\hline Question number \& Answer \& Accept \& Reject \& Marks \\
\hline 3 (d) \& \begin{tabular}{l}
M1 barium sulfate is formed \\
M2 which is not poisonous/not toxic/harmless \\
IGNORE references to magnesium hydroxide not poisonous \\
M2 dep on M1 \\
M3 barium hydroxide + magnesium sulfate \(\rightarrow\) barium sulfate + magnesium hydroxide \\
OR \\
barium ions + sulfate ions \(\rightarrow\) barium sulfate
\end{tabular} \& \begin{tabular}{l}
'products', provided shown correctly in word equation is insoluble
\[
\begin{aligned}
\& \underset{\mathrm{Ba}_{\mathrm{BaSO}}^{2} \mathrm{OH}_{4}}{\mathrm{BaSO}}+\mathrm{MgSO}_{4} \\
\& \mathrm{Mg}(\mathrm{OH})_{2}
\end{aligned}
\] \\
OR
\[
\begin{aligned}
\& \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \\
\& \mathrm{BaSO}_{4}
\end{aligned}
\]
\end{tabular} \& \& 1
1

1

\hline | (e) (i) |
| :--- |
| (ii) |
| (iii) | \& | M1 water - (reacts) very/extremely quickly/more quickly than strontium/quickest |
| :--- |
| IGNORE rapidly/vigorously |
| M2 air - (reacts) very/extremely quickly/more quickly than strontium/quickest |
| (without heating) |
| I GNORE rapidly/vigorously |
| in/under any one of the following: (paraffin/mineral) oil/petroleum (oil)/(liquid) paraffin |
| IGNORE in an air tight container |
| reactivity increases as atomic number increases | \& | explosively/violently |
| :--- |
| explosively/violently |
| in a vacuum |
| reactivity increases with atomic number/down the group OWTTE reverse argument | \& \& 1

1
1
1
1

\hline
\end{tabular}

		positive correlation		
			Total	$\mathbf{1 2}$

Question number	Answer	Accept	Reject	Marks
4 (a)	M1 (negative electrode) - graphite M2 (positive electrode) - graphite	carbon carbon		2
(b) (i) (ii)	it/aluminium oxide/alumina has a (very) high m.pt I GNORE high b.pt/references to strong bonding/bauxite has a high m.pt/lot of energy needed to melt it aluminium oxide/alumina is dissolved in/mixed with (molten/liquid) cryolite I GNORE cryolite lowers the m.pt of aluminium oxide/alumina	added to $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ for cryolite cryolite is used as the solvent (for aluminium oxide/alumina)	aluminium has a high melting point aluminium is dissolved in cryolite	1 1
(c)	M1 reduction M2 (it/aluminium ions/ Al^{3+}) gain of electron(s) IGNORE references to loss of oxygen M2 dep on M1	reacts with/combines with decrease in oxidation number/oxidation number changes from +3 to 0	redox for M1 only Al/aluminium gains electrons	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(d)	M1 oxygen formed/produced (at the positive electrode/anode) IGNORE oxygen from the aluminium oxide M2 reacts with the carbon/the (positive) electrode M2 not dep on M1, but must mention oxygen	oxygen from the electrolysis anode / graphite	any indication that the oxygen is from the air for M1 only cathode/negative electrode	1 1
(e)	Any two from: M1 malleable M2 low density	easy to shape/easy to bend/easy to extrude bend		2

	M3 does not react with food/drink(s) I GNORE light(er)/high strength to weight ratio/references to cost/lightweight/does not rust	non-toxic/ does not corrode			
				Total	10
Question number	Answer	Accept	Reject	Marks	
5 (a)	M1 (molecules/compounds/substances) with the same molecular formula/number of each type of atoms I GNORE chemical formula/same compound M2 (but) different structural formulae/different displayed formulae/different structures	hydrocarbons atoms arranged differently	elements/atoms general formula/empirical formula for M1 only	1 1	
(b)	D			1	
(c) (i) (ii)	M1 $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$ M1 double bond between two left hand end carbon atoms M2 single bond between each pair of rest of carbon atoms Penalise max 1 mark for any extra bond shown	letters other than n , e.g. x	$\mathrm{C}_{n}+\mathrm{H}_{2 n}$	1 1 1	
(d)	M1 addition M2 orange M3 colourless I GNORE clear/transparent/looks like water	additional yellow/brown	red, either on its own or in combination with any other colour		
(e)	```M1 saturated - all (carbon to carbon) bonds are single /contains only (carbon to carbon)```	does not contain any multiple/double bonds		1	

	single bonds M2 unsaturated - contains (carbon to carbon) double/multiple bond(s)		1	
			Total	$\mathbf{1 1}$

(d)	M1 colourless IGNORE clear/transparent/looks like water		1	
M2 brown (solution) / (dark) grey/black solid/precipitate	red- brown/orange/orange- brown	red on its own	1	
			$\mathbf{T o t a l}$	$\mathbf{1 6}$

Question number	Answer	Accept	Reject	Marks
7 (a)	M1 (reactants) s aq M2 (products) aq I g	capital letters		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(b) (i) (ii)	to prevent acid escaping/spraying out/spitting out IGNORE to prevent water escaping C	solution/liquid/ HCl		1 1
(c) (i) (ii)	M1 A M2 gas produced/collected more quickly / experiment over in shorter time / (gradient of) line steeper M2 dep on M1 M1 0.1(0) M2 volume of gas is half/ $40 \div 80=1 / 2 / 80=40$ $\times 2$ M2 dep on M1	reaction is faster Half the products are produced		1 1 1 1
(d) (i) (ii)	M1 \& M2 - all points plotted to nearest gridline deduct 1 mark for each incorrect plot up to a max. of 2 M3 suitable straight line of best fit (csq on plotted points) (must be drawn with the aid of a ruler). Line need not beextrapolated. M1 as concentration increases rate increases	(show a) positive correlation as one doubles the other doubles/directly proportional		2 1 1 1

(iii)	M2 proportional / in proportion M1 more ions/particles (in a given volume) IGNORE more reactants M2 collide (successfully) M3 more per second/more frequently Must be reference to frequency or number of collisions per unit time I GNORE greater chance of collision	for 2 marks	molecules/atoms any reference to greater energy	1 1 1
			Total	16

Question number	Answer	Accept	Reject	Marks
8 (a) (i) (ii) (iii)	Impurities/chemicals/substances may affect the colour/flame I GNORE affect the result/test colour can (easily) be seen (in a non-luminous flame) I GNORE references to temperature yellow/orange/gold(en)	a luminous flame may mask the colour any combination of the acceptable colours, e.g. golden-yellow		1 1 1
(b) (i) (ii) (iii)	Li^{+}and Ca^{2+} M1 - ammonia/ NH_{3} M2 - (water is needed) to form hydroxide ions $/ \mathrm{OH}^{-}$ M1 - iron(III)/Fe ${ }^{3+}$ M2 - ammonium $/ \mathrm{NH}_{4}{ }^{+}$ If both names and formulae given both must be correct	lithium and calcium/Li and Ca to form an alkali/an alkaline solution/ammonium hydroxide to dissolve the ammonia ammonia needs to be aqueous ferric	Ca^{+}etc any other oxidation states/ferrous ammonia	1 1 1 1 1 1
			Total	8

Question number	Answer	Accept	Reject	Marks
10 (a)	any two from: - forward and backward reactions (still) occurring - concentrations/amounts of reactants/products/components remain constant - rate of forward reaction = rate of reverse reaction I GNORE concentrations/amounts of reactants and products are the same I GNORE reaction is reversible/goes both ways, OWTTE I GNORE references to le Chatelier	both reactions (still) occurring stay the same in place of remain constant		2
(b) (i) (ii)	M1 - (increase in temperature) decrease(s) M2 - (increase in pressure) increase(s) M1 - (forward) reaction is exothermic/gives out heat OR reverse reaction is endothermic/takes in heat M2 - fewer (gas) molecules/particles on right hand side OR fewer moles (of gas) on right hand side I GNORE references to volumes I GNORE references to le Chatelier's principle IGNORE references to reverse reaction lowers the temperature I GNORE references to forward reaction reduces the pressure	less/lower(s)/drop(s)/gets smaller more/raise(s)/higher/gets bigger reverse argument shifts to side with fewer (gas) molecules/fewer moles (of gas)	atoms	1

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
10 (c) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
(the position of) equilibrium is not established/reached \\
M1 - (the mixture of gases is) cooled \\
M2 - ammonia liquefies / condenses recycled / reused / recirculated
\end{tabular} \& \begin{tabular}{l}
temperature is decreased \\
put (back) into the reaction chamber used again (in the process)
\end{tabular} \& \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline (d) \& heat(ing) / energy costs would be higher \& yield (of ammonia) would decrease \& \& 1 \\
\hline \begin{tabular}{l}
(e) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{array}{ll}
\hline \text { M1 } \& M_{r}\left(N_{2}\right)=28 \\
\text { M2 } \& 112000 \div 28(=4000) / 112000 \div \\
\text { M1 } \& \\
\text { M3 } 8000 / \mathbf{M 2} \times 2
\end{array}
\] \\
1200 / 15\% of M3
\end{tabular} \& \begin{tabular}{l}
28 anywhere in the calculation \\
\(112 \div 28) \times 2=8\) for 2 marks \\
\((112000 \div 14) \times 2=16000\) \\
for 2 marks \\
Correct final answer without working for 3 marks
\end{tabular} \& \& 1
1
1

1

\hline \& \& \& Total \& 15

\hline
\end{tabular}

Question number	Answer	Accept	Reject	Marks
11 (a)	(produces) most heat/energy per gram / per unit mass	highest temperature rise per gram / per unit mass most energy for smallest number of grams / mass	per amount	1
(b)	(produces) most heat/energy per mole/per molecule / per amount	highest temperature rise per mole / per molecule most energy for smallest number of moles / molecules / amount		1
(c)	Any two from: - heat/energy losses (e.g. by convection, by conduction, to air, to surroundings) - incomplete combustion - evaporation of water - copper / can / beaker / thermometer /apparatus absorbs heat - flame moves around because of draughts	- non-standard conditions		2
(d) (i) (ii)				$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(e)	M1 breaking bonds is endothermic / takes in heat/energy M2 making bonds is exothermic / gives out heat/energy M3 more heat/energy given out than taken in	more energy is given out when bonds are made than is taken in when bonds are broken for 3 marks more energy is given out when bonds are made than when bonds are broken for 1 mark		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

	IGNORE references to numbers/strengths of bonds			
			Total	$\mathbf{9}$

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code xxxxxxxx Summer 2013

Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

