edexcel

Mark Scheme (Results)
Summer 2013

International GCSE
Chemistry (4CH0) Paper 2C

Edexcel Level 1/Level 2 Certificate Chemistry (KCHO) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG037093
All the material in this publication is copyright
© Pearson Education Ltd 2013

Question number	Answer	Accept	Reject	Marks
1 (a)	filtration	filtering		1
(b)	(simple) distillation	distilling	fractional distillation	1
(c)	dissolving			1
(d)	chromatography		1	
(e)	fractional distillation	fractionally distil(ling)	just distillation / simple distillation	1
			Total	$\mathbf{5}$

Question number	Expected Answer			Accept	Reject	Marks
2	pH at start	pH at end	Correct letter			
	7	7	A			1
	7	11	E		1	
	14	7	C			1
	7	6	B			
	7			Total	$\mathbf{4}$	

Question number	Answer	Accept	Reject	Marks
3 (c)	copper sulfate/copper ions completely reacted / been used up / run out IGNORE copper completely reacted/magnesium is in excess/references to saturated solution / reactant(s) used up	all of the copper has been displaced / deposited reaction complete		1
(d)	M1 - smaller/larger with magnesium M2 - fewer moles of metal/zinc added / less copper displaced/fewer moles of copper sulfate reacted / fewer moles of copper ions reacted I GNORE references to particles / surface area M2 DEP on M1	less/lower less heat produced ORA less amount fewer atoms of metal/zinc added less (mass/moles of) copper displaced	less mass of metal/zinc added	1 1
			Total	9

Question number	Answer	Accept	Reject	Marks
4 (a) (i) (ii)	poly(ethene) cracking	polyethene / polythene / polyethylene		1 1
(b) (i) (ii)	M1 - bar labelled 9 M2 - drawn to correct height (boiling point/it) increases as number of carbon atoms increases	ORA as one goes up, the other goes up positive correlation	(directly) proportional	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question number	Answer	Accept	Reject	Marks
5 (a) (i) (ii)	unsaturated M1 - (unsaturated) colourless I GNORE clear/transparent/looks like water M2 - (saturated) orange	no colour yellow / brown and any combination	discoloured any other colour either on its own or in combination with an accepted colour	1 1 1
(iii)	addition			1
(b) (i)	A			1
(ii)	C and D	C, D	C or D	1
(iii)	each colouring has a different mixture/combination/patterns of dyes	Spots / dots for dyes		1
	IGNORE references to different heights / distances and solubilities.			
			Tota	7

Question number	Answer	Accept	Reject	Marks
6 (a)	(giant) ionic I GNORE three-dimensional / lattice		any other answer	1
(b)	M1 and M3 can be scored from labelled diagrams sodium: M1 - positive ions/cations/ Na^{+}and (delocalised/sea of) electrons IGNORE metal ions M2 - (electrostatic) forces/attraction between positive ions/cations/ Na^{+}and (delocalised) electrons IGNORE references to metallic bonding sodium chloride: M3 - positive and negative ions/cations and anions / Na^{+}and Cl^{-} (ions) M4 - electrostatic forces/attraction between (oppositely charged/positive and negative) ions / cations and anions / Na^{+}and Cl^{-} I GNORE references to ionic bonding comparison: M5 - forces in Na are weaker (than forces in NaCl) can be awarded even if an incorrect description of the forces has been given. [standalone]	Sodium / metal ions oppositely charged ions chlorine ions if stated as being negative less energy required to overcome forces in Na bonds / lattice for forces ORA	atoms/molecu les nuclei intermolecular forces atoms/molecu les nuclei intermolecular forces reference to covalent loses M4	1 1 1 1 1 1

Question number	Answer	Accept	Reject	Marks
6 (c)	$\text { M1 }-\mathrm{n}(\mathrm{Na})=\frac{0.138}{23} \text { or } 0.006$	$0.072 \mathrm{dm}^{3}$		1
	M2-n(H_{2}) $=1 / 2 \times$ M1 or 0.003			1
	M3 - vol. $\mathrm{H}_{2}=24000 \times$ M2 or $72\left(\mathrm{~cm}^{3}\right)$ [Mark consequentially. $n(\mathrm{Na})$ and $n\left(\mathrm{H}_{2}\right)$ need not be evaluated.] correct final answer on its own without working scores 3			1

Question number	Answer	Accept	Reject	$\begin{gathered} \text { Mar } \\ \text { ks } \end{gathered}$
6 (d) (i) (ii)	M1 - (add dilute) nitric acid M2 - (add aqueous) silver nitrate M3 - white precipitate / solid / suspension M3 dependent on M2 Reason - it fizzed / a gas was evolved OR sodium hydroxide would not fizz / produce a gas I GNORE incorrect identification of gas $\mathbf{X}=$ sodium carbonate / sodium hydrogencarbonate	addition of silver nitrate before nitric acid for both M1 and M2 correct formulae throughout sodium hydroxide is soluble		1 1 1 1 1 1
(e)	M1 - 8 electrons around Na M2-8 electrons around Cl . I GNORE inner shells even if incorrect I GNORE starting diagrams showing atoms either with or without arrow to show movement of electron M3 - correct charge on both Na and Cl [standalone]	any combination of dots and crosses 0 electrons		1 1 1 1
(f)	M1 - potassium is more reactive than sodium M2 - (but) bromine is less reactive than chlorine	reactivity increases down Group 1 ORA reactivity decreases down Group 7 ORA	-ide endings	1 1
			Total	19

Question number	Answer				Accept	Reject	Marks
7 (a)	Solution	Negative electrode	Positive electrode	Substance left	correct formulae throughout	O for oxygen	1
	silver sulfate	silver					
	potassium nitrate		oxygen	potassium nitrate			2
(b) $\begin{aligned} & \text { (i) } \\ & \\ & \text { (ii) }\end{aligned}$	to increase its (electrical) conductivity / to make it a (better) (electrical) conductor / to lower its (electrical) resistance IGNORE references to carrying current / charge / adds hydrogen ions				carbon / graphite copper/ silver / gold / titanium		1
					to increase the concentration/numb er of ions		1
(c) (i) (ii)	Moles/amount of hydrogen (produced) $=2 \times$ moles/amount of oxygen (produced) IGNORE explanations based on forming water (some of the) oxygen dissolves in water/acid				number of molecules of hydrogen (produced) is twice that of oxygen	explanations based on atoms	1
					(some of the) oxygen reacts with the (carbon) electrode/to form CO_{2} (which then dissolves)	oxygen reacts with water/(sulfuric) acid	1
(d)	M1 - number of faradays $=\frac{482500}{96500}$ or 5 M2-n(H_{2}) $=1 / 2 \times$ M1 or 2.5 Final answer on its own without working scores 2					Incorrect units	1 1
						Total	9
						Total for paper	60

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG037093 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Lywodraeth Cynulliad Cymru Welsh Assembly Government

Rewarding Learning

