# General Certificate of Education (A-level) June 2013 

## Biology

 BIOL2(Specification 2410)
Unit 2: The Variety of Living Organisms

## Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: $\underline{\text { aqa.org.uk }}$
Copyright © 2013 AQA and its licensors. All rights reserved.

## Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the school/college.

Set and published by the Assessment and Qualifications Alliance.

| Question | Marking Guidance | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 1(a)(i) | Centromere; | 1 | Accept: if phonetically correct <br> Reject: centriole |
| :--- | :--- | :---: | :--- |

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { 1(a)(ii) } & \begin{array}{l}\text { 1. Holds chromatids together; } \\
\text { 2. Attaches (chromatids) to spindle; } \\
\text { 3. } \begin{array}{l}\text { (Allows) chromatids to be } \\
\text { separated/move to (opposite) } \\
\text { poles / (centromere) } \\
\text { divides/splits at metaphase/ } \\
\text { anaphase; }\end{array} \\
\hline\end{array} & 2 \text { max } & \begin{array}{l}\text { 3. } \mathbf{Q} \text { Neutral: chromosomes or } \\
\text { chromatids } \\
\text { split/halved/divided }\end{array}
$$ <br>
3. Reject: reference to <br>
homologous chromosomes <br>

being separated\end{array}\right\}\)| Accept 'chromosomes' instead of |
| :--- |
| 'chromatids' |
| Ignore incorrect names for $\mathbf{X}$ |


| 1(a)(iii) | (Homologous chromosomes) carry <br> different alleles; | 1 | Accept alternative descriptions for <br> 'alleles' eg different forms of a <br> gene / different base sequences |
| :--- | :--- | :---: | :--- |
| Neutral: reference to maternal and <br> paternal chromosomes |  |  |  |


| 1(b)(i) | (In Figure 2) <br> 1. Chromatids have separated (during anaphase); <br> 2. Chromatids have not replicated; <br> 3. Chromosomes formed from only one chromatid; | 1 max | 1. Q Neutral: split/halved/divided <br> 1. Reject: reference to homologous chromosomes being separated <br> 1. \& 2. Accept 'chromosomes' instead of 'chromatids' <br> Accept converse arguments for Figure 1 <br> Ignore references to the cell not dividing as in the question stem <br> Ignore: named phases |
| :---: | :---: | :---: | :---: |
| 1(b)(ii) | 1. Three chromosomes; <br> 2. One from each homologous pair; | 2 | Ignore shading <br> Only one mark for three chromosomes shown as pairs of chromatids |


| 1(b)(iii) | Crossing over / alleles exchanged <br> between chromosomes or chromatids <br> / chiasmata formation / genetic <br> recombination; | 1 | Accept: description of crossing <br> over eg sections of chromatids <br> break and rejoin <br> Neutral: random fertilisation |
| :--- | :--- | :---: | :--- |
|  |  | Reject: reference to sister <br> chromatids <br> Q Neutral: genes exchanged <br> Neutral: mutation |  |


| Question | Marking Guidance | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 2(a) | 1. Group of similar organisms / organisms with similar features / / organisms with same genes/chromosomes; <br> 2. Reproduce / produce offspring; <br> 3. That are fertile; | 2 max | 1. Accept: same number of chromosomes <br> 1. Accept: smallest taxonomic group <br> 1. Reject: genetically identical. Only allow 1 max if mentioned <br> 1. $\mathbf{Q}$ Neutral: similar genes/chromosomes <br> 2. Accept: breed/mate <br> 3. Neutral: that are 'viable' <br> 'Produce fertile offspring' = 2 marks |
| :---: | :---: | :---: | :---: |


| $2(\mathrm{~b})(\mathrm{i})$ | Correct answer of 6.97 to 7 <br> $=2$ marks; <br> One mark for 6320 as numerator or <br> 906 as denominator; | 2 |  |
| :--- | :--- | :--- | :--- |


| 2(b)(ii) | 1. Decrease in variety of plants / fewer plant species; <br> 2. Fewer habitats/niches; <br> 3. Decrease in variety of food / fewer food sources; <br> 4. Aspect of clearing forest (killing insects) eg machinery, pesticides; | 3 max | 1. Accept: reference to monoculture or description <br> 1. Neutral: fewer plants <br> 2. Neutral: fewer homes/less shelter <br> 3. Neutral: less food <br> 3. Accept: less variety of prey <br> 4. Neutral: clearing forest unqualified |
| :---: | :---: | :---: | :---: |


| Question | Marking Guidance | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 3(a)(i) | 1. Groups within groups; <br> 2. No overlap (between groups); | 2 | 1. Accept: idea of larger <br> groups at the top / smaller <br> groups at the bottom |
| :---: | :--- | :---: | :---: |
| 3(a)(ii) | (Grouped according to) evolutionary <br> links/history/relationships / common <br> ancestry; | 1 | Neutral: closely related <br> Neutral: genetically similar |


| 3(b)(i) | 1. (Only) one amino acid different / <br> least differences / similar amino <br> acid sequence / similar primary <br> structure; <br> 2. (So) similar DNA sequence/ <br> base sequence; | 2 |  |
| :---: | :--- | :---: | :---: |
| 3(b)(ii) | 1.Compared with humans / not <br> compared with each other; <br> 2.Differences may be at different <br> positions / different amino acids <br> affected / does not show where <br> the differences are (in the <br> sequence); <br> 3(b)(iii)1. All organisms respire/have <br> cytochrome c; <br> (Cytochrome c structure) is more <br> conserved / less varied (between <br> organisms); | Accept: degenerate code / more <br> than one triplet (codes) for an <br> amino acid |  |
| 2max | Accept: converse arguments for <br> haemoglobin |  |  |
| 1. Accept 'more' instead of |  |  |  |
| 'all' |  |  |  |


| Question | Marking Guidance | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 4(a) | 1.Separates/unwinds/unzips <br> strands/helix/breaks H-bonds; <br> 2. (So) nucleotides can attach/are <br> attracted/strands can act as <br> templates;$\quad 2$ | 1. Q Q Neutral: strands/helix <br> split |
| :---: | :--- | :---: | :--- |
|  |  | 1. Accept: unzips bases <br> 2. Q Neutral: bases can <br> attach |



| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 5(a)(i) | Prevent cell wall formation / cause (cell) lysis / inhibit ribosomes / inhibit protein synthesis / prevent DNA replication / affect function of cell membrane; | 1 max | Accept: weaken the cell wall <br> Neutral: damage/break down the cell wall <br> Q Reject: if in context of a cellulose cell wall <br> Accept: bind to ribosomes |
| 5(a)(ii) | (Plasmid/genes transmitted through) cell division/reproduction/replication/generations; | 1 | Accept: multiply <br> Accept: binary fission <br> Reject: within generations <br> Reject: reference to horizontal gene transmission <br> Reject: mitosis <br> Ignore reference to immunity |
| 5(b) | Representative/typical/reliable / different types of bacteria; | 1 | Neutral: accurate <br> Neutral: reference to anomalies <br> Q: Neutral: different strands of bacteria |
| 5(c) | (Yes) <br> 1. Largest clear zone/diameter/mean (so more bacteria killed); <br> (No) <br> 2. Standard deviations of chlorhexidene overlap/share values; <br> 3. (Overlap means difference) is not significant / is due to chance; | 3 | Ignore references to methodology <br> 2. Neutral: diameters overlap/share values <br> 3. Can still be awarded if SD overlap or nonoverlap is correctly interpreted <br> 3. Accept: (difference) is not real/not reliable <br> 3. Neutral: spread is not reliable |
| 5(d) | 1. Mutation (in bacterium); <br> 2. Gene/allele for resistance; | 2 | 1. Neutral: different strains <br> 2. Reject: if in the context of 'immunity' <br> 2. Accept: resistant gene/allele |


| Question | Marking Guidance | Mark | Comments |
| :--- | :--- | :--- | :--- |


| $6(a)$ | Statement | Haemo- <br> globin | Cellulose | Starch | 3 | One mark for each correct <br> row |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Has a <br> quaternary <br> structure | $\checkmark$ |  |  |  |  |  |
| Formed by <br> condensation <br> reactions | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |
| Contains <br> nitrogen | $\checkmark$ |  |  |  |  |  |


| $6(\mathrm{~b})$ | $16 ;$ | 1 |  |
| :---: | :--- | :---: | :---: |
| $6(\mathrm{c})$ | 1. Higher affinity / loads more oxygen; <br> 2. At low/same/high partial pressure/pO <br> 2 | 2 max |  |
| 3. Oxygen moves from mother/to fetus; |  |  |  |$\quad$|  |
| :--- |


| 6(d) | 1. Low affinity / oxygen dissociates; <br> 2. (Oxygen) to respiring <br> tissues/muscles/cells; | 2 | Assume 'it' is adult <br> haemoglobin <br> 1. Accept: converse if <br> 'fetal haemoglobin' <br> is clearly stated |
| :---: | :--- | :---: | :--- |
| 2. Q: Neutral |  |  |  |
| 'respirate' |  |  |  |

$\left.\begin{array}{|c|l|c|l|}\hline 6(\mathrm{e}) & \begin{array}{l}\text { Enough adult Hb produced / enough oxygen } \\ \text { released / idea that curves/affinities/Hb are } \\ \text { similar / more red blood cells produced; }\end{array} & 1 & \begin{array}{l}\text { Neutral: 'adult Hb is also } \\ \text { produced' as in the } \\ \text { question stem }\end{array} \\ \text { Reject: curves/affinities/Hb } \\ \text { are the same }\end{array}\right]$

| Question | Marking Guidance | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 7(a) | 1.Population formed by a small <br> number of founders/people /30 <br> people; <br> 2. (Founders show) less genetic <br> diversity / small(er) gene pool / <br> less variety of alleles; | 3 max | Accept: converse arguments for <br> the non-Amish population |
| :---: | :---: | :---: | :---: |
| 3. Individuals breed within group / <br> do not breed with outsiders; <br> 4.High(er) chance of inheriting <br> allele (than in non-Amish <br> population); | 2. Q Neutral: fewer alleles |  |  |
| 3. Accept: inbreeding for |  |  |  |
| 'individuals breed within |  |  |  |
| group' |  |  |  |


| 7 (b) | $250000 ;$ | 1 |  |
| :--- | :--- | :--- | :--- |

$\left.\begin{array}{|c|l|c|l|}\hline \text { 7(c)(i) } & \begin{array}{l}\text { Loss of } 3 \text { bases/triplet = } 2 \text { marks;; } \\ \text { Loss of base(s) = } 1 \text { mark; }\end{array} & 2 & \begin{array}{l}\text { 'Stop codon/code formed' } \\ =1 \text { mark max unless related to the } \\ \text { last amino acid }\end{array} \\ \text { eg triplet for last amino acid is } \\ \text { changed to a stop codon/code } \\ =2 \text { marks } \\ 3 \text { bases/triplet forms an intron } \\ =2 \text { marks } \\ \text { Accept: descriptions for 'intron' eg } \\ \text { non-coding DNA } \\ \text { 'Loss of codon' }=2 \text { marks }\end{array}\right]$

| 7(c)(ii) | 1. Change in tertiary structure/ <br> active site; | 2 | 2.(Soutral: change in 3D shanlty/non-functional protein <br> lenzyme; <br> structure |
| :---: | :--- | :---: | :--- |


| Question | Marking Guidance | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 8(a) | (In the root) | 6 max |  |
| :---: | :---: | :---: | :---: |
|  | 1. Casparian strip blocks apoplast pathway / only allows symplast pathway; <br> 2. Active transport by endodermis; <br> 3. (Of) ions/salts into xylem; <br> 4. Lower water potential in xylem / water enters xylem by osmosis /down a water potential gradient; <br> (Xylem to leaf) <br> 5. Evaporation / transpiration (from leaves); <br> 6. (Creates) cohesion / tension / H -bonding between water molecules / negative pressure; <br> 7. Adhesion / water molecules bind to xylem; <br> 8. (Creates continuous) water column; |  | Assume all points are in the correct location unless context suggests otherwise |
|  |  |  |  |
|  |  |  | 4. $\mathbf{Q}$ Neutral: ‘along’ a water potential gradient |
|  |  |  |  |
|  |  |  | $\begin{aligned} & \text { 'Transpiration pull' }=2 \text { marks } \\ & \text { (5. \& 6.) } \end{aligned}$ |
|  |  |  | 6. Accept 'pulling' <br> 6. Q Neutral: 'suction' |
|  |  |  |  |
|  |  |  |  |

\(\left.$$
\begin{array}{|c|l|c|c|}\hline \text { 8(b) } & \begin{array}{l}\text { Correct answer of 342.8-343 } \\
\text { = } 2 \text { marks;; } \\
\text { Credit incorrect answers that show } \\
\text { the numerator as 144 (or 186-42) or } \\
\text { denominator as 42 for 1 mark; }\end{array} & 2 & \\
\hline \text { 8(c) } & \begin{array}{l}\text { 1. More air/oxygen enters / } \\
\text { air/oxygen enters quickly/quicker; } \\
\text { 2. (So) maintains/greater diffusion } \\
\text { or concentration gradient; }\end{array} & 2 & \begin{array}{l}\text { 1. Accept: converse for } \\
\text { carbon dioxide } \\
\text { Can be in any correct }\end{array}
$$ <br>
(context eg insect, <br>

tracheoles, muscle\end{array}\right]\)| 1. Neutral: air/oxygen enters |
| :--- |\(\left|\begin{array}{|c|c|c|}\hline 8(d) \& \begin{array}{l}Large(r) SA:VOL / short(er) diffusion <br>

distance (to tissues);\end{array} \& 1 <br>

\hline Accept: thin diffusion pathway\end{array}\right|\)| 8(e) |
| :--- |
| 6/6.6 / 6.7 / 7 / 7.5 / 8 = 2 marks;; <br> Award 1 mark for incorrect answers <br> that have divided 60 by any number; |


| 8(f) | Less/no water lost / (more) water <br> retained; | 1 | Accept: less dehydration / less <br> evaporation <br> Q Reject: less 'transpiration' <br> Q Reject: less water lost by <br> osmosis |
| :---: | :--- | :---: | :--- |
| 8(g) | 1. Greater surface area exposed to <br> air; <br> 2.Gases move/diffuse faster in air <br> than through water; <br> 3. Increases volume/amount of air; | 1 max | Neutral: shorter diffusion distance <br> 2. $\mathbf{Q}$ Neutral: 'harder to <br> diffuse' |


| Question | Marking Guidance | Mark | Comments |
| :--- | :--- | :--- | :--- |


| 9(a) | Any two suitable suggestions eg <br> 1. Volume/concentration of skin lipid; <br> 2. Age/sexual maturity; <br> 3. Species of snake; <br> 4. Size of male; <br> 5. Colour; <br> 6. Temperature; <br> 7. Light; <br> 8. Time of day/year/breeding season; <br> 9. Duration/length of time observing; <br> 10. Diet; <br> 11. Filter paper; <br> 12. Size of cage; | 2 max | 1. Accept: amount <br> Neutral: environment / health / body mass / number of snakes |
| :---: | :---: | :---: | :---: |


| 9(b) | To avoid bias; | 1 |  |
| :---: | :--- | :---: | :--- |
| 9(c) | 1. To avoid change in (courtship) <br> behaviour (due to past <br> experience); <br> 2.To observe a <br> typical/general/representative <br> (response);$\sqrt[1 \text { max }]{ } \quad$Accept: ethical arguments eg <br> causing distress to snakes |  |  |
| Neutral: reference to anomalous <br> results |  |  |  |


| 9(d) | Filter paper without (skin) lipids / <br> untreated filter paper / filter paper with <br> water / (female) snakes with lipids <br> removed; | 1 | Accept: filter paper qualified eg <br> only filter paper <br> Neutral: reference to using male <br> snakes/lipids from male snakes |
| :---: | :--- | :---: | :--- |


| 9(e) | 1.Similar response to lipids and <br> (whole) snakes; <br> 2. (So males are) responding to <br> lipids; | 2 max | Neutral: greater response to long <br> snakes and lipids from long <br> snakes as in the question stem |
| :---: | :--- | :--- | :--- |
| 3. (So males are) not responding to |  |  |  |
| (whole) snakes/visual clues; |  |  |  |$\quad$|  |
| :--- |


| 9(f) | (Parent/offspring) <br> 1. Produce more/larger offspring/eggs; <br> 2. Better predators / fitter / more successful at gaining food / less likely to be eaten / more able to protect offspring/eggs; <br> 3. (More) sexually mature / fertile; <br> 4. Have more food stores for offspring/eggs; | 2 max | 3. Neutral: mature |
| :---: | :---: | :---: | :---: |
| 9(g) | 1. (Males) respond to/sense (unsaturated) fatty acids; <br> 2. (Long females) produce/have more fatty acids / positive correlation; | 2 | 1. Reference to courtship behaviour on its own is not sufficient <br> Reference to 'lipids/fats' is neutral for both mark points. However, if fatty acids are mentioned for either mark point, accept lipids/fats = fatty acids for the other mark point |
| 9(h) | 1. Draw a line of best fit; <br> 2. Extrapolation / extend line; | 2 |  |
| 9(i) | Results vary for a particular body size/\% / values overlap / small sample size / idea of reaching maximum/100\%/ a plateau; | 1 | Neutral: reference to inaccurate line of best fit <br> Neutral: 'results vary' |
| 9(j) | (Other females/species) produce different fatty acids; | 1 | Must refer to fatty acids rather than just 'lipids/fats' <br> Accept: lack of receptors |

