

General Certificate of Education (A-level)
June 2013

Biology BIOL5

(Specification 2410)

Unit 5: Control in Cells and in Organisms

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the school/college.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Question	Marking Guidance	Mark	Comments
1(a)	One/an amino acid (can be) coded for by more than one triplet;	1	Accept codon for triplet Accept description of triplet – three bases/nucleotides
1(b)	 Triplet/three bases on mRNA; That code for an amino acid; 	2	 Accept nucleotide for base Accept DNA for mRNA Ignore references to RNA unqualified Accept code for stop/start
1(c)(i)	To join <u>nucleotides</u> together to form mRNA/premRNA/RNA;	1	Reject forming base pairs Accept checking and correcting mismatched base pairs
1(c)(ii)	Reverse transcriptase;	1	If they give two enzymes, no mark
1(d)	GGATCC same as CCTAGG in opposite direction;	1	Accept reads same both ways/same forward and back Neutral bases are the opposite of each other/reference to base pairs

Question	Marking Guidance	Mark	Comments
2(a)(i)	 Moves out of the way when calcium ions bind; Allowing myosin to bind (to actin)/crossbridge formation; 	2	Accept shape change with Ca ²⁺ Don't accept just "calcium" Accept presence of calcium ions leads to movement instead of binds Accept references to troponin
2(a)(ii) 2(b)(i)	 Head (of myosin) binds to actin and moves/pulls/slides actin past; (Myosin) detaches from actin and re-sets/moves further along (actin) This uses ATP; (Glycogen broken down) gives (lots of) glucose for glycolysis/anaerobic 	2 max	1. Accept myosin power stroke (to move actin) 1. Accept push 1. Accept crossbridges form instead of myosin head binds to actin 1. Must refer to myosin head or crossbridges 1. Give if context of anaerobic respiration
	respiration; 2. Glycolysis/anaerobic respiration not very efficient/only yields 2 ATP per glucose;		clear 2. Accept anaerobic respiration is a quick source of ATP for exercise 2. Accept very little ATP
2(b)(ii)	 (Many capillaries) give high concentration/lots of oxygen/shorter diffusion pathway for oxygen/large surface area for oxygen exchange/diffusion; Good glucose supply with little glycogen present; Allows high rate of/more aerobic respiration <i>OR</i> prevents build-up of lactic acid/(muscle) fatigue; 	2 max	Accept idea of aerobic respiration during endurance events/long periods of exercise

Question	Marking Guidance	Mark	Comments
3(a)	Three changes described;;; Eg 1. Formation/growth of vacuole; 2. Formation of starch grains/amyloplasts; 3. Movement of grains/amyloplasts towards bottom of cell; 4. Cells get longer/wider/larger;	3 max	Neutral nucleus shrinks, since it doesn't 2. Accept starch grains get bigger Note – list rule applies
3(b)	 Grows sideways before starch grains form; Bending starts when/as grains form; More bending as grains increase in number; More elongation (of cells)/growth (of roots) downwards as starch grains increase/move; Bending starts before grains move down; Could be related to vacuole; 	3 max	3. Ignore starch grain growth references 6. Ignore references to nucleus
3(c)	 Greater (elongation) growth on top of root/less growth on bottom of root; (IAA) at bottom of root/where IAA concentration high inhibits expansion/elongation (of cells); (IAA) at top of root/where IAA concentration low leads to expansion/elongation (of cells); 	2 max	Ignore references to effects of IAA on cell division Reject references to cell shrinkage 2 and 3 need reference to expansion/elongation, not just growth 3. Accept less inhibition

Question	Marking Guidance	Mark	Comments
4(a)	 Positive correlation between sucrose and dopamine concentrations/higher concentration of sucrose, more dopamine; So (dopamine) makes them want to drink/eat more (sucrose); Positive feedback because drinking/eating leads to wanting to drink/eat (even) more; 	3	Q NB question is 'How do these', not 'Do these 1. Ignore simple statements of numbers from graph without description of trend 3. It must be a clear statement of why this example is positive feedback, not inferred from points 1 and 2
4(b)	1. (Refractory period) leads to discrete/separate nerve impulses/time when another nerve impulse can't happen; OR (Refractory period) limits number of impulses per second/frequency of nerve impulses; 2. When maximum frequency reached/exceeded, no further increase in information/all (higher) concentrations of sucrose seem the same;	2	
4(c)	 (Negative feedback) stops desire/wish to eat/appetite; (This) limits amount eaten/stops eating; Prevents/reduces risk of obesity/too much energy intake; 	3	1. Accept stops dopamine release (in this context) 1. Accept makes them feel full 2. Accept prevents constant eating 3. Accept prevents vomiting Accept descriptions based on what would happen in absence of the feedback mechanism – or if stomach empty for points 1 and 2

Question	Marking Guidance	Mark	Comments
5(a)	4.9/4.89;; 38.62 – 36.82; 36.82	2 max	Correct answer = 2 marks
5(b)	Suitable reason with explanation;; Eg Suit prevents loss of sweat; So heat of evaporation not lost; OR Water (initially) at higher temperature than skin/body/blood; (So) heat gained/less lost (by conduction/convection);	2 max	Accept idea of no heat gradient lgnore references to 'by radiation'
5(c)	 Yes for temperature and oxygen consumption/no for carbon dioxide; Because P value (equal to, or) less than 0.05 (other than carbon dioxide)/ P value greater than 0.05 (for carbon dioxide); 	2	 Here assume understanding that 0.001 is less than 0.05 Accept correct use of < and > for less than and more than Accept valid responses based on greater or less than 95%
5(d)	 Increased temperature leads to faster enzyme activity; Faster rate of respiration (and oxygen consumption); 	2	 Accept faster metabolism Accept more oxygen for respiration to mean more respiration

Question	Marking Guidance	Mark	Comments
6(a)	Cytosine with Guanine and (Adenine) with Uracil;	1	Ignore G, C and U
6(b)	Two reasons, with suitable amplification;;	4 max	Q
	Only infected cells have HIV protein on surface;		
	So carrier only attaches to/specific to these cells/siRNA can only enter these cells;		
	OR		
	siRNA (base sequence) complementary/specific to one mRNA;		Accept idea of specificity
	Only infected cells contain mRNA of HIV/this gene/ stops translation of this gene/only binds to this mRNA /destroys this mRNA;		Accept could not inhibit other/non- HIV mRNA
6(c)	 Carrier binds to (protein on) HIV; Prevents HIV/it binding to (receptor on human) cell; 	2	Accept references to HIV membrane Reject references to binding to HIV protein on human cell

Question	Marking Guidance	Mark	Comments
7(a)	 Causes sodium ion channels to open; Sodium ions enter (cell and cause depolarisation); 	2	Reject if wrong sequence of events Reject sodium on its own only once
7(b)	 (If not removed) keeps binding (to receptors); Keeps causing action potentials/depolarisation (in post-synaptic membrane); Prevents information being carried across synapse/described consequence; 	2 max	Accept answers based on what happens if it is transported out – ie what should happen 2. Accept keeps Na ⁺ channels open(ing)
7(c)	 Movement in all groups (about) same before MDMA; MDMA increases movement in Group L; Group K shows MDMA causes movement; No/little increase in mice without receptor/Group M; 	3 max	2. Accept normal mice for L 3. Accept K is a control

Question	Ма	rking Guidance	Mark	Comments
8(a)	1.	Carriers are heterozygous/have one normal copy and one mutant copy of gene/have one recessive allele/don't have the condition;	3 max	
	2.	Both have DNA that binds (about) half/50% amount of probe (that non-carrier does);		
	3.	Probe binds to dominant/healthy allele;		Accept normal and
	4.	So only one copy of exon in their DNA/ have one copy of gene		gene
		without exon/base sequence for probe to bind to;		Accept have <u>a</u> deletion mutation
8(b)	1.	Introns not translated/not in mRNA;	3 max	Accept not expressed
	2.	(Exons) code for amino acids/introns do not code for amino acids;		Accept polypeptide/protein for amino acids
	3.	Mutations of these (exons) affect amino acid sequences;		Accept deletion leads to frameshift
	4.	(That produce) faulty protein/change tertiary structure of protein;		In this context, accept affects protein made
	5.	So important to know if parents' exons affected, rather than any other part of DNA/introns;		Accept converse arguments involving – eg introns do not code for amino acids/proteins
				Reject references to making amino acids, once
8(c)	1.	Restriction mapping/described;	2	
	2.	DNA/base sequencing (of fragments)/ description/name of method;		

Question	Marking Guidance	Mark	Comments
9(a)	 No effect at 25°C; Keeps growing at 30°C and 35°C/up to 35°C (more than without GB); Above 35°C, falls but grows more than plant without GB; 	2 max	The question only refers to plants with GB 1. Reject same mass 3. Accept at all temperatures above 25°C more growth than without GB
9(b)(i)	Significantly different /SEs do not overlap;	1	Accept converse without GB
9(b)(ii)	 (As temperature increases,) Enzyme activity reduced/(some) enzymes denatured; Less photosynthesis, so fewer sugars formed; Less (complex) biological molecules/organic substances made (that add to mass); Less respiration; Less energy/ATP for growth; Less energy for named function associated with growth 	4 max	3. Accept named (significant) substance – eg cellulose. Do not accept glucose/simple sugars 6. Eg mitosis, uptake of mineral ions
9(c)	 (Rubisco activase attaches to thylakoid and) this changes shape/tertiary structure (of enzyme)/blocks active site/changes active site; (This) prevents substrate/RuBP entering active site/binding; 	2	Note – question states enzyme stops working when it attaches to thylakoid, not before 1. Accept rubisco in this context 2. Accept prevents ES complex forming 2. Accept no longer complementary to substrate/RuBP

9(d)	1.	GB prevents/reduces binding of rubiscoactivase to (thylakoid membrane);	4 max	Accept enzyme instead of rubiscoactivase. Accept rubisco
	2.	(Prevents it) up to 35°C;		
	3.	(So) rubiscoactivase/enzyme remains active;		
	4.	(So) photosynthesis/light-independent stage still happens;		Accept descriptions of light-independent stage
	5.	Above 35°C, some binding still occurs but less than without GB, so less reduction in growth;		ing.ii. iii.aopeilaoiii elage
9(e)	1.	Looked for information/journals, on crop plants that grow at high temperatures;	2 max	"other research" is minimum accepted
		•		Accept previous experiments research with temperature resistant crops
				Ignore simple references to looking at previous studies/other plants – need to relate to this context
	2.	(Crop plants cited in this research) contain/make GB;		
	3.	So assumed making plants produce GB makes them resistant to high temperatures;		

Additional notes on marking Question 10

Care must be taken in using these notes. It is important to appreciate that the only criteria to be used in awarding marks to a particular essay are those corresponding to the appropriate descriptors. Candidates may gain credit for any information providing that it is biologically accurate, relevant and of a depth in keeping with an A-level course of study. Material used in the essay does not have to be taken from the specification, although it is likely that it will be. In fact, extra credit is given for those who show evidence of a greater breadth of study. These notes must therefore be seen merely as guidelines providing an indication of areas of the specification from which suitable factual material might be drawn.

In determining the mark awarded for breadth, content should ideally come from each of the areas specified if maximum credit is to be awarded. Where the content is drawn from two areas, two marks should be awarded and where it is taken only from a single area, one mark should be awarded. However, this should only serve as a guide. This list is not exhaustive and examiners should be prepared to offer credit for the incorporation of relevant material from other areas of study.

1.CH Cholera 1.TB TB 2.T Taxonomy 2.C Classification and evolution other letters if they wish The emphasis in answers should be on the relationships and interactions between organisms not just the topics themselves Breadth, one mark for use	Question	Marki	ng Guidance	Mark	Comments
3. Ecological 3. BP Relationships within ecosystems – eg predator/prey 3. Energy transfer in ecosystems 3. Human intervention in relationships 4. Human intervention in relationships 3. Succession, biodiversity, species and individuals in a	10(b)	1.CH 1.TB 2.T 2.C 2.I 2.Gc 2.B	Cholera TB Taxonomy Classification and evolution Inheritance and evolution Genetic code, universal Behaviour Populations and evolution,	25	The emphasis in answers should be on the relationships and interactions between organisms not just the topics themselves Breadth, one mark for use of an example from each of the following approaches – 3 max: 1. Pathogen and host 2. Evolution (related
4.H Human impacts on the environment and its effect on relationships between organisms – including farming 4.Gt Gene technology and GMO and selective breeding		3.E 3.N 3.S	Relationships within ecosystems – eg predator/prey Energy transfer in ecosystems Nutrient cycles, the organisms involved Succession, biodiversity, species and individuals in a community Human impacts on the environment and its effect on relationships between organisms – including farming Gene technology and GMO and		3. Ecological4. Human intervention