

## Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE Physics (4PH0) Paper 1P Science Double Award (4SC0) Paper 1P

Pearson Edexcel Level 1/Level 2 Certificate Physics (KPH0) Paper 1P Science (Double Award) (KSC0) Paper 1P



## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2015 Publications Code UG042407 All the material in this publication is copyright © Pearson Education Ltd 2015

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question<br>number | Answer                             | Notes | Marks |
|--------------------|------------------------------------|-------|-------|
| 1 (a)              | A - fission                        |       | 1     |
| (b)                | A - absorbing some of the neutrons |       | 1     |

Total 2 marks

| Que  | esti<br>mbe |      | Answer                                                                             | Notes                                                                                                                                  | Marks |
|------|-------------|------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2 (a |             | (i)  | 6 (m/s);                                                                           |                                                                                                                                        | 1     |
|      |             | (ii) | 10 (s);                                                                            |                                                                                                                                        | 1     |
| (t   | b)          | (i)  | Acceleration = <u>change in velocity</u> ;<br>time (taken)                         | allow accepted symbols                                                                                                                 | 1     |
|      |             | (ii) | Substitution in correct equation;<br>Evaluation;<br>Unit;<br>e.g. 12 ÷ 10<br>= 1.2 | ms <sup>-2</sup>                                                                                                                       | 3     |
|      |             |      | m/s <sup>2</sup>                                                                   | condone m/s/s                                                                                                                          |       |
| (0   | c)          | (i)  | (average) speed = <u>distance (moved)</u> ;<br>time                                | allow accepted symbols                                                                                                                 | 1     |
|      |             | (ii) | Substitution in correct equation;<br>Evaluation;<br>e.g. 390 ÷ 60<br>6.5 (m/s)     | (388.5 ÷ 60 =<br>6.475)                                                                                                                | 2     |
| (c   | d)          |      | MP1 Idea that distance is given by <b>area</b> under the graph;                    | ignore<br>steepness of lines,<br>velocity,<br>acceleration,<br>width                                                                   | 2     |
|      |             |      | MP2 <b>Comparison</b> of the two <i>areas (by eye or by calculation)</i> ;         |                                                                                                                                        |       |
|      |             |      |                                                                                    | NOTE: a valid<br>comparison that<br>includes MP1 +MP2<br>gains both marks<br>e.g. the first 30s<br>area is larger than<br>the last 30s |       |

Total 11 marks

| Questic<br>numbe |      | Answer                                              | Notes                                                                                                                                                                                                                                                           | Marks |
|------------------|------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3 (a)            | (i)  | C – a fuse                                          |                                                                                                                                                                                                                                                                 | 1     |
|                  | (ii) | Idea of independent switching for<br>lamps / rooms; | Allow<br>idea of one bulb blowing but<br>not affecting others<br>idea that bulbs in parallel are<br>bright(er than in series)                                                                                                                                   | 1     |
| (b)              |      | MP1. Idea of current changing<br>direction;         | vary is not enough                                                                                                                                                                                                                                              | 2     |
|                  |      | MP2. Continuously;                                  | Allow + and – current Can<br>be shown as a diagram<br>/graph (assume axes labels)<br>Minimum requirement: MP1<br>shows both + and - (e.g.<br>approximate sine curve)<br>MP2 more than one cycle                                                                 |       |
| (C)              | (i)  | Conversion to seconds;                              | Allow 3600 or 25200 seen anywhere in working                                                                                                                                                                                                                    | 3     |
|                  |      | Substitution in correct formula;<br>Evaluation;     | anywhere in working                                                                                                                                                                                                                                             |       |
|                  |      | e.g. t = 7 × 3600 (= 25200 s)                       |                                                                                                                                                                                                                                                                 |       |
|                  |      | $E = 0.12 \times 230 \times 7 \times 3600$          | (695520)                                                                                                                                                                                                                                                        |       |
|                  |      | 700 000(J)                                          | Correct answer without<br>working scores full marks<br>Accept alternative matching<br>unit<br>e.g. 696 kJ<br>11592 = 2 marks (time in<br>mins)<br>193.2 = 2 marks (time in<br>hours)<br>Answer in Wh or Wmin with<br><u>matching</u> unit scores full<br>marks. |       |
|                  | (ii) | <b>B</b> - same as - less than                      |                                                                                                                                                                                                                                                                 | 1     |

| Question<br>number | Answer                                                                                            | Notes                                                                                                                                                             | Marks |
|--------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 4                  | Max of three electrical hazards identified;;;                                                     |                                                                                                                                                                   | 6     |
|                    | Max of three amplifying details<br>relevant to the hazard(s)<br>identified;;;                     | Max of 2 amplifications for<br>any one hazard.<br>A repeated amplification can<br>only be credited once e.g.<br>shock, fire, provide plenty of<br>sockets<br>e.g. |       |
|                    | MP1. Idea of <b>water</b> in contact<br>with something electrical e.g.<br>plugs/sockets/switches; | Idea that water conducts electricity;                                                                                                                             |       |
|                    | plugs/societs/switches,                                                                           | Idea that this can cause shock;                                                                                                                                   |       |
|                    | MP2. Idea that an electrical device with a heating element                                        | (risk of ) burns;                                                                                                                                                 |       |
|                    | reaches a <b>high temperature</b> ;                                                               | idea that insulation can melt and cause a fire;                                                                                                                   |       |
|                    | MP3. Idea that <b>damaged</b><br>equipment poses a hazard;<br>e.g. microwave oven                 | Live parts should not be<br>exposed;<br>Idea that this can cause<br>shock;<br>leaky microwave radiation<br>can cause cancer;                                      |       |
|                    | MP4. Idea <b>overloaded</b> cables or sockets;                                                    | circuits should have correct<br>fuses;<br>can cause a fire;                                                                                                       |       |
|                    |                                                                                                   | don't use multiway socket<br>extensions;<br>provide sufficient sockets;                                                                                           |       |
|                    | MP5. Idea of <b>trip hazard</b> from trailing cables;                                             | Do not use extension<br>cables;<br>Provide sufficient sockets;<br>Use short mains leads;<br>NOTE                                                                  |       |

| MP6. Idea of misusing         | Appropriate training/safety  |
|-------------------------------|------------------------------|
| equipment e.g. sticking metal | regime, e.g. use of 'blanks' |
| objects into a socket or      | to cover sockets that        |
| exposed heating element;      | children can reach;          |
|                               | Idea that this can cause     |
|                               | shock;                       |
|                               | Use proper (insulated)       |
|                               | tools;                       |

Total 6 marks

| Question<br>number | Answer                                                                                                                                                                                                                                                                                              | Notes                                                                                                                         | Marks  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|
| 5 (a)              | <ul> <li>Any two of -</li> <li>MP1. mention of no zero error;</li> <li>MP2. Mention that ruler is should be vertical;</li> <li>MP3. use of a fiducial marker;</li> <li>MP4. use of ruler with finer calibrations;</li> <li>MP5. means to reduce parallax;</li> <li>MP6. use of calliper;</li> </ul> | Ignore<br>(more) accurate ruler<br>e.g. a pin<br>Allow<br>• more detailed ruler<br>• smaller intervals<br>ignore<br>proximity | 2      |
| (b) (i)<br>(ii)    | Distance<br>Any two of -<br>MP1. Idea of weight is the force<br>on the mass / W=mg ;<br>MP2. change grams to kilogram;                                                                                                                                                                              | in any form including<br>numerical<br>Accept ÷ 1000                                                                           | 1<br>2 |
|                    | MP3. 1N of force for every<br>100g;<br>MP4. g is 10 (N/kg);                                                                                                                                                                                                                                         | Ignore ÷ 100 without<br>further explanation<br>Allow idea of gravitational<br>field strength<br>Accept x 10                   |        |

Continued

| Questio<br>numbe |      | Answer                                                                                                           |                                                                          | Notes                                                                                                 | Marks |
|------------------|------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------|
| 5 (b) (          | iii) | Suitable linear scale chosen (>50%                                                                               | no awkwar                                                                | d scale                                                                                               | 5     |
| (                | iv)  | of grid used);<br>Axes labelled with quantities and<br>unit;                                                     | Orientatior                                                              | n unimportant                                                                                         |       |
|                  |      | Plotting correct to nearest half square<br>(minus one for each plotting error);;<br>Line of best fit acceptable; | i.e. two plo<br>marks for<br>i.e. straigh                                |                                                                                                       |       |
|                  |      | 5.0                                                                                                              | Force<br>in N                                                            | Distance <i>h</i><br>in cm                                                                            |       |
|                  |      | 4.0                                                                                                              | 0.2                                                                      | 4.6                                                                                                   |       |
|                  |      |                                                                                                                  | 0.4                                                                      | 3.9                                                                                                   |       |
|                  |      | distance h 3.0                                                                                                   | 0.6                                                                      | 3.1                                                                                                   |       |
|                  |      | 2.0                                                                                                              | 0.8                                                                      | 2.3                                                                                                   |       |
|                  |      | X                                                                                                                | 1.0                                                                      | 1.6                                                                                                   |       |
|                  |      | 1.0                                                                                                              | 1.2                                                                      | 0.9                                                                                                   |       |
|                  |      | 0.6<br>0 0.2 0.4 0.6 0.8 1 1.2 1.4<br>force in N                                                                 |                                                                          |                                                                                                       |       |
| (                | iv)  | straight line seen extended to the                                                                               |                                                                          |                                                                                                       | 2     |
|                  |      | force axis;                                                                                                      |                                                                          | 3 SF unless line                                                                                      |       |
|                  |      | 1.40 ≤ F ≤1.46 (N);                                                                                              | force = $1.4$                                                            | gh 1.40 accept<br>4<br>range = two                                                                    |       |
| (                | (v)  | NO mark for Yes/No answer<br>Any two of -                                                                        | Allow                                                                    |                                                                                                       | 2     |
|                  |      | MP1. Correct statement of Hooke's law;                                                                           | extension<br>proportion                                                  | is (directly)<br>al to force                                                                          |       |
|                  |      | MP2. graph shows equal decrements for distance with force                                                        | <ul> <li>the ignore gra</li> <li>direction</li> <li>inversion</li> </ul> | al steps<br>line is straight<br>ph is<br>ctly proportional<br>rsely proportional<br>ative correlation |       |
|                  |      | MP3. (line goes down because)<br>different distance has been<br>measured;                                        | <ul><li>measur</li><li>extension</li><li>out from</li></ul>              | on can be worked<br>m data<br>prce = larger                                                           |       |
|                  |      | MP4. graph does not pass through the origin;                                                                     |                                                                          |                                                                                                       |       |

|   | Question<br>number |      | Answer                                                                                                                                                                                                      | Notes                                                                                                                                        | Marks |
|---|--------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6 | (a)                | (i)  | Any two of:<br>MP1. Idea of marking the line/points;                                                                                                                                                        | accept a labelled<br>diagram<br>allow<br>use of iron filings<br>use a compass                                                                | 2     |
|   |                    |      | MP2. Idea of moving the compass (to a new point along the line);                                                                                                                                            | <ul> <li>allow</li> <li>tapping paper<br/>to line up iron<br/>filings</li> <li>multiple<br/>compasses</li> </ul>                             |       |
|   |                    |      | MP3. Idea of starting a new line from<br>a different place;                                                                                                                                                 |                                                                                                                                              |       |
|   |                    | (ii) | Any two of:<br>MP1. Correct shape <b>only</b> ;<br>MP2. lines not crossing each other;<br>MP3. correct direction arrow shown on                                                                             | all field lines must<br>be correct<br>minimum of two<br>curved lines of<br>correct shape<br>added anywhere<br>in the field<br>reject for MP3 | 2     |
|   |                    |      | at least one line;                                                                                                                                                                                          | any conflict of<br>arrows                                                                                                                    |       |
|   | (b)                |      | MP1 <b>all</b> field lines between the poles<br>shown parallel and straight (by eye);<br>MP2 minimum of 3 straight lines evenly<br>spaced (by eye) between the poles;<br>MP3 Opposite poles shown adjacent; | ignore arrows<br>can only be given<br>if minimum of 2<br>lines shown                                                                         | 3     |

Total 7 marks

| Questi<br>numb |       | Answer                                                                                                              | Notes                                                                                                    | Marks |
|----------------|-------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------|
| 7 (a)          | (i)   | gravitational potential energy = mass ×<br>g × height                                                               | Allow abbreviations<br>e.g.<br>g.p.e. = mgh<br>for g/gravitational<br>field strength reject<br>'gravity' | 1     |
|                | (ii)  | Substitution into correct equation;<br>Evaluation;<br>e.g. g.p.e. = 0.19 × 10 × 17<br>= 32 (J)                      | 32.3 (J) (or 31.6 J<br>when g = 9.8 ms <sup>-2</sup> )<br>allow<br>32300 for 1 mark                      | 2     |
|                | (iii) | Value same as for (a)(ii)                                                                                           | Allow "the same"                                                                                         | 1     |
| (b)            | (i)   | Judge by eye<br>Weight shown acting downwards;<br>Drag shown acting against motion;                                 | NB NO label = no<br>mark<br>Allow<br>abbreviations for<br>labels e.g W, mg<br>ignore<br>gravity          | 2     |
|                |       | drag<br>weight                                                                                                      |                                                                                                          |       |
|                | (ii)  | k.e. = $\frac{1}{2} \times \text{mass} \times \text{velocity}^2$                                                    | Allow abbreviations<br>e.g. k.e. = $\frac{1}{2}$ mv <sup>2</sup>                                         | 1     |
|                | (iii) | Substitution into correct equation;<br>Evaluation;<br>e.g. k.e. = $\frac{1}{2} \times 0.19 \times 13^2$<br>= 16 (J) | (16.055)<br>16055 gets 1 mark                                                                            | 2     |
|                | (iv)  | A an unbalanced force acts on the squirrel                                                                          |                                                                                                          | 1     |

Total 10 marks

| Question<br>number | Answer                                                                                                                                                                     | Notes                                                     | Marks |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------|
| 8 (a)              | (Average speed) increases;                                                                                                                                                 |                                                           | 1     |
| (b)                | Any three of the following ideas-                                                                                                                                          | allow                                                     | 3     |
|                    | <ul><li>MP1. Idea of (continuous) random motion;</li><li>MP2. collide /impacts / eq;</li></ul>                                                                             | bombard, hit,<br>impact upon                              |       |
|                    | <ul> <li>MP3. With walls (of balloon);</li> <li>MP4. idea that force is produced (by bombarding molecules);</li> <li>MP5. idea as pressure as force on an area;</li> </ul> | momentum<br>argument / N3<br>p = F/A                      |       |
| (c)                | Any one of the following ideas-<br>MP1. convection (current moves hot air<br>upwards);                                                                                     | allow RA<br>ignore hot air rises                          | 1     |
|                    | MP2. hot air/it is less dense;                                                                                                                                             | condone lighter<br>reject for MP2<br>less dense particles |       |
| (d) (i)            | Density = <u>mass</u> ;<br>volume                                                                                                                                          | Accept symbols or<br>rearrangement<br>e.g. ρ=m/V          | 1     |
| (ii)               | Substitution into correct equation;                                                                                                                                        | allow sub and<br>rearrangement in<br>either order         | 3     |
|                    | Rearrangement;<br>Evaluation;<br>e.g. $0.95 = \frac{m}{2800}$                                                                                                              |                                                           |       |
|                    | $m = 0.95 \times 2800$<br>= 2700 (kg)                                                                                                                                      | 2660                                                      |       |
| (e) (i)            | Any one of the following ideas -                                                                                                                                           | Allow                                                     | 1     |
|                    | MP1. atmospheric density decreases as height increases;                                                                                                                    | <ul> <li>number of<br/>molecules<br/>decreases</li> </ul> |       |
|                    | <ul> <li>MP2. depth (from top of atmosphere)<br/>decreases;</li> <li>MP3. temperature of air is colder /<br/>(cold)molecules move slower;</li> </ul>                       | (from ρ.g.h idea)                                         |       |
| (ii)               | Any one of the following ideas -<br>MP1.air inside/balloon expands;<br>MP2. (hot) air escapes (from the<br>balloon);                                                       | Allow                                                     | 1     |
|                    | MP3.hot air (now) cools down / need to<br>use burner;                                                                                                                      | idea that outside<br>air is cooler at<br>altitude         |       |

Total 11 marks

| Question<br>number | Answer                                                                                                                                              | Notes                                                                                              | Marks |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------|
| 9                  | Any four of -<br>MP1.either<br>transfer between the two is by<br>conduction;<br>or<br>same SA either way up.<br>MP2.Infrared (radiation) mentioned; | -<br>ignore other<br>comments about<br>conduction,<br>convection ,<br>absorption and<br>reflection | 4     |
|                    | MP3.Idea of emission of thermal energy;                                                                                                             | for thermal energy<br>accept<br>heat or radiation<br>e.g.<br>black emits heat                      |       |
|                    | MP4.a correct effect of (surface) colour on emission;                                                                                               | <ul> <li>e.g.</li> <li>black is a good<br/>emitter</li> <li>white is a poor<br/>emitter</li> </ul> |       |
|                    | MP5.Comparative of surfaces;                                                                                                                        | e.g. the black loses<br>more heat than the<br>white                                                |       |
|                    | MP6. correct statement about thermal energy flow at <b>equilibrium</b> temperature;                                                                 |                                                                                                    |       |

Total 4 marks

| Question<br>number | Answer                                                                                                                                                                                                                               | Notes                                                                                                                                                                                                                                                                                                          | Marks |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 10 (a)             | B galaxy – solar system – Sun – planet                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                | 1     |
| (b) (i)            | <ul> <li>MP1. Idea that (orbit) shapes both<br/>(approximately) circular;</li> <li>MP2. Idea that both planets orbit<br/>the same star /Sun;</li> <li>MP3. similar plane of orbit;</li> <li>MP4. Same direction of orbit;</li> </ul> | accept elliptical, oval,<br>eccentricity<br>Allow "Sun is at centre<br>of orbit"                                                                                                                                                                                                                               | 2     |
| (ii)               | different orbital radii ;                                                                                                                                                                                                            | <ul> <li>Allow</li> <li>Earth (orbit) radius &lt;<br/>Mars orbit radius</li> <li>different time period</li> <li>correct reference to<br/>speed of orbit</li> <li>different<br/>circumference</li> <li>reject incorrect<br/>comparisons</li> </ul>                                                              | 1     |
| (c)                | Substitution into correct equation;<br>Evaluation;<br>Answer to two significant figures;<br>e.g. $v = \frac{2 \times \pi \times 23500}{1.26}$ (1 mark)<br>= 117 000 (2 marks)<br>120 000 (km (day)) (2 marks)                        | $2 \pi r / T ONLY$<br>NO mark for equation as<br>it is given on page 2<br>Bald correct answer to 3<br>or more s.f. scores 2                                                                                                                                                                                    | 3     |
| (d)                | <ul> <li>=120 000 (km/day) (3 marks)</li> <li>MP1. Idea that the orbital radii of the two Moons are different;</li> <li>MP2. Idea that orbit radius of Enceladus is larger;</li> </ul>                                               | marks, e.g. 117186<br>Ignore references to<br>gravity<br>ORA<br>NB<br>MP1 will be subsumed<br>within MP2 response<br>e.g orbit radius of<br>Enceladus is ten times<br>as big (ORA) gets both<br>marks<br>Allow response in terms<br>of <b>orbit</b> / <b>orbit</b><br>diameter / <b>orbit</b><br>circumference | 2     |

Total 9 marks

| Question<br>number |     |      | Answer                                                                                                                                                                                                                              | Notes                                                                                                                                                                                                                                                                                                       | Marks |
|--------------------|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 11                 | (a) | (i)  | A – electromagnetic waves                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             | 1     |
|                    |     | (ii) | time;<br>for amount of (radioactive)<br>isotope to halve;<br>OR<br>for (radio)activity to halve;                                                                                                                                    | accept<br>how long it takes<br>do not accept 'half of the<br>time'<br>accept for 'amount'<br>(number of un-decayed)<br>nuclei / atoms / molecules<br>/ (un-decayed) mass of<br>isotope                                                                                                                      | 2     |
|                    | (b) |      | <ul> <li>Any two of -</li> <li>MP1. (α or β) would have insufficient range;</li> <li>MP2. (α or β) would be absorbed by patient/air;</li> <li>MP3. (α or β) are more ionising (than gamma rays);</li> </ul>                         | specific concepts and<br>terminology are needed<br>if the source is external<br>max mark is ONE<br>allow<br>ORA<br><b>penetration</b><br>ORA<br>stopped by skin / bone<br>Allow ( $\alpha$ or $\beta$ ) would be<br>(more) likely to cause<br>cancer/ damages cells<br>(than gamma rays), ORA               | 2     |
|                    | (c) | (i)  | <ul> <li>Any two of -</li> <li>MP1. Idea that activity is due to nucleus decaying;</li> <li>MP2. (after some time) fewer radioactive nuclei /atoms left;</li> <li>MP3. Number (of nuclei) decaying per second decreases;</li> </ul> | specific concepts and<br>terminology are needed<br>do not credit repeat of<br>stem<br>Reject for 1 mark.<br>(it/nucleus) breaks down<br>allow<br>• nucleus is unstable<br>• nucleus emits gamma<br>• nucleus changes into<br>new isotope<br>fewer atoms of the same<br>isotope left<br>decay rate decreases | 2     |

| (ii) | one halving calculated;<br>Idea of four half-lives / halvings;<br>Evaluation;<br>e.g.<br>(420/2=) 210 for 1 mark | <ul> <li>4 repeated halving seen</li> <li>fraction remaining is<br/>1/16 of activity</li> <li>Allow</li> </ul>                                                                         | 3 |
|------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | 24 ÷ 6 = 4 (half-lives)<br>26 MBq (26.25)                                                                        | <ul> <li>four divisions by 2 seen<br/>for 2<sup>nd</sup> mark</li> <li>remaining fraction =<br/>1/16 = 0.0625</li> <li>Correct answer without<br/>working scores full marks</li> </ul> |   |

Total 10 marks

|    | Questi<br>numb |       | Answer                                                                                                                                                                                        | Notes                                                                                 | Marks |
|----|----------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------|
| 12 | 2 (a)          | (i)   | Any two of -<br>MP1. Idea that the reflection is (from a<br>surface) <b>inside</b> the material;<br>MP2. Idea that <b>all</b> of the light is<br>reflected;                                   | NB do not credit<br>repeat of 'totally',<br>'internally'<br>within                    | 2     |
|    |                |       | <ul><li>MP3. Idea that reflection occurs inside<br/>the optically more dense medium;</li><li>MP4. light incident at angle greater than<br/>critical angle</li></ul>                           | Allow inside the<br>higher refractive<br>index medium                                 |       |
|    |                | (ii)  | <ul> <li>Any two sensible uses –</li> <li>e.g.</li> <li>optical fibres for communication;</li> </ul>                                                                                          | allow<br>only allow bald<br>'optical fibre' if no<br>other O.F. mark<br>given         | 2     |
|    |                |       | <ul> <li>in endoscopes;</li> <li>optical fibres in decorative<br/>lamps/eq;</li> <li>in safety reflector;</li> </ul>                                                                          | description of use<br>e.g bicycle/car<br>reflector, cat's eye                         |       |
|    |                |       | <ul> <li>(Rectifying) prism in<br/>binoculars/telescope;</li> <li>(Viewing) prism in camera;</li> <li>(Reflecting) prism in periscope;</li> <li>(Reflecting) prism in rangefinder;</li> </ul> |                                                                                       |       |
|    | (b)            | (i)   | <b>B</b> - OB                                                                                                                                                                                 |                                                                                       | 1     |
|    |                | (ii)  | sin c = 1/n                                                                                                                                                                                   | Allow<br>rearrangements<br>and abbreviations<br>µ for n<br>condone<br>sin i for sin c | 1     |
|    |                | (iii) | Substitution and rearrangement in correct<br>equation;<br>Evaluation;<br>e.g. n=1/sin 42° = 1/0.6691<br>n= 1.5                                                                                | 1.49, 1.50<br>(1.4945)                                                                | 2     |

| Question<br>number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes                                                                                                                                                                                                                                                                                                     | Marks  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 13 (a) (i)<br>(ii) | <ul> <li>2 (cm)</li> <li>Sketched wave (at least 1 cycle) with a larger amplitude;</li> <li>Sketched wave (at least 1 cycle) with a longer wavelength;</li> </ul>                                                                                                                                                                                                                                                                                            | Shape of wave and<br>position of axis<br>unimportant (i.e.<br>ignore conditions of<br>wind and tide)                                                                                                                                                                                                      | 1<br>2 |
| (b)                | <ul> <li>Any five of -</li> <li>MP1. A method to make a loud enough sound;</li> <li>MP2. Speed = <u>distance</u> time;</li> <li>MP3. Need for still air;</li> <li>MP4. Repeat AND average;</li> <li>MP5. Need to check/reset stopwatch zero reading;</li> <li>MP6. Idea of clear visual signal;</li> <li>MP7. measurement of time <b>interval</b> (between visual signal and sound);</li> <li>MP8. Idea of reaction time(s) (could be a problem);</li> </ul> | ignore<br>measurement of<br>distance<br>bald 'clap'<br>• wooden blocks<br>• noise has to<br>heard over<br>100m<br>RA<br>allow repeat AND<br>sort out anomalies<br>e.g.<br>• when the sound<br>is seen to be<br>made<br>• smoke from<br>starting pistol<br>(because) light<br>travels faster than<br>sound | 5      |

Continued

| Question<br>number |      | Answer                                                                                                                                                                           | Notes                                                                                         | Marks |
|--------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------|
| 13 (c)<br>cont     | (i)  | wave speed = frequency × wavelength                                                                                                                                              | Allow abbreviations<br>and<br>rearrangements,<br>e.g. $v=f\lambda$                            | 1     |
|                    | (ii) | Conversion to Hz;<br>Substitution into correct equation and<br>rearrangement;<br>Evaluation;<br>e.g. 31 MHz = 31 000 000 Hz<br>wavelength = 300 000 000 ÷ 31 000<br>000<br>9.7 m | Allow 10 <sup>6</sup> seen at<br>any stage<br>allow answers<br>which round to 9.7<br>(9.6774) | 3     |
| (d)                |      | Any one of the following ideas -<br>MP1. the two waves travel at different<br>speeds;<br>MP2. the two waves travel the same<br>distance (or 1 wavelength) in<br>different times; | ignore references<br>to<br>• transverse and<br>longitudinal<br>• em spectrum                  | 1     |

Total 13 marks

| Question<br>number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Notes                                                                                                     | Marks |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------|
| 14 (a) (i)         | Voltmeter connected in parallel with any circuit component;<br>Component chosen is the thermistor;                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ignore a line<br>through the<br>voltmeter symbol                                                          | 2     |
| (ii                | (because voltage is) a controlled variable;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Allow<br>idea of fair test                                                                                | 1     |
| (iii               | <ul> <li>Any one of -</li> <li>MP1. Idea of adjustment (of current or circuit resistance);</li> <li>MP2. To control the current;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           | 1     |
| (b)                | <ul> <li>Any three of -</li> <li>references to the data:</li> <li>MP1. (yes it works) when the temps are high, the current almost matches the temperature;</li> <li>MP2. (no it's not OK) when the temps are lower, the current value does not match the temperature;</li> <li>MP3. It is only right at 10 (and 100);</li> <li>Practicality ideas:</li> <li>MP4. The current cannot be negative when the temperature is negative;</li> <li>MP5. Idea that Voltage will not be constant/ voltage has to be adjusted to keep it constant;</li> </ul> | however expressed<br>e.g. About the<br>same from 80 °C to<br>100 °C;<br>e.g. not equal at<br>20mA 20 °C   | 3     |
|                    | <ul> <li>line ideas</li> <li>MP6. Line/ graph is curved /eq;</li> <li>MP7. Line/ graph does not pass through the origin;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                | allow (graph shows<br>that) current not<br><b>directly</b><br>proportional to<br>temperature<br>allow 0,0 |       |

Total 7 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom