edexcel

Mark Scheme (Results)
Summer 2015

Pearson Edexcel Certificate
Chemistry (KCHO) Paper 2C
Pearson Edexcel International GCSE
Chemistry (4CH0) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UG041072
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number		Answer	Notes	Marks	
1	a	i	C (neutrons and protons)		1
		ii	A (6)		1
		iii	D (11)		1
	b	4		1	
	C	i	P AND T	Accept more electrons than protons Accept fewer protons than electrons Accept 2 electrons and 1 proton Ignore references to electron gained	1
		ii	S	1	
	d	(one) more electron than protons OR (one) fewer proton than electrons			
			Total marks		

Question number			Answer	Notes	Marks
2	a		gas escapes / gas is lost (from the crucible)	Accept gas is given off / gas is evolved / gas is released / gas is given off Allow carbon dioxide/ CO_{2} for gas Ignore copper(II) carbonate decomposes Reject incorrect name of gas	1
	b		$\left(\mathrm{CuCO}_{3}(\mathrm{~s})\right)$ green	Ignore qualifiers such as pale / dark Reject any other colours	1
			(CuO(s)) black	Ignore qualifiers such as pale / dark Reject any other colours Allow $1 / 2$ for two correct colours in wrong order	1
	c	i	1		1
		ii	the last two masses are not the same OR no two masses are the same	Part (ii) DEP on correct or missing answer to part (i) Accept mass still changing / mass not constant / mass is still decreasing Accept results / readings in place of mass Accept reverse argument eg the others are to constant mass	1
		iii	D (..spirit burner instead of Bunsen burner)		1

d	$\frac{3.4 \times 100}{3.7}$		1
	92 \%	Accept 3 or more sf, eg 91.9 / 91.89 / 91.892 Correct answer with no working scores 2 Allow 1 mark for 0.92	1
		Total 8 marks	

Question number			Answer	Notes	Marks
3	a		B (red-brown liquid)		1
	b		2 (1) 2	Accept multiples and fractions	1
	c	i	a halogen/an element cannot displace itself OR no reaction / no displacement (would occur)	Accept a halogen does not react with its own (halide) ions Accept correct reference to a specific halogen/halide ion Accept nothing happens Reject any references to a halogen having the same reactivity as a halide (ion)	1
		ii	a halogen cannot displace a more reactive halogen OR a halogen cannot react with the (halide) ions of a more reactive halogen	Reject any references to a halogen having a different reactivity to a halide (ion) Accept correct reference to a specific halogen/halide ion	1
		iii	potassium bromide	Ignore any formula Reject any other species with corrected name	1

Question number				Answer	Notes	Marks
3		iv	$\begin{aligned} & \hline \text { M1 } \\ & \text { M2 } \end{aligned}$	$\begin{aligned} & \text { (correct products) } \mathrm{KCl} \mathrm{AND} \mathrm{I}_{2} \\ & 22 \end{aligned}$	Accept in either order M2 DEP on M1	
	c	v		(both) reduction AND oxidation occur (in the same reaction)	Accept (both) gain AND loss of electrons occurs (in the same reaction) Accept (both) gain AND loss of oxygen occurs (in the same reaction) Accept (both) increase AND decrease of oxidation states/oxidation numbers (in the same reaction) Ignore incorrect species being oxidised and reduced / losing and gaining electrons	1

| | | vi | M1 | (species) \mathbf{I}^{-}/ iodide (ion) | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | M2 | (reason) loss of electron(s) | Accept increase in oxidation number
 OR oxidation number changes from
 -1 to 0 |

Question number				Answer	Notes	Marks
4	a	i		zymase	Accept yeast	1
		ii		$2 \mathrm{CO}_{2}$		1
	b			any value in range $250-350\left({ }^{\circ} \mathrm{C}\right)$	If range given, it must lie inside 250-350 Accept equivalent answers in other units, if the unit is given	1
	C		$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	(reaction 1) fermentation (reaction 3) hydration	Accept decomposition Ignore anaerobic respiration Accept addition Ignore references to continuous process	2
	d			Any two of: - product is pure(r) / product is (more) concentrated - reaction is fast(er) - continuous process is more efficient - greater atom economy	Accept does not need separating from impurities	2

			Answer	Notes	Marks
4	e		sugar cane (is readily) available OR no crude oil (to obtain ethene from) OR sugar cane is renewable /sugar cane is sustainable / crude oil is finite	Accept (large area of) land on which to grow sugar cane I gnore references to glucose Accept have a suitable climate for growing sugar cane Accept crude oil is (too) expensive Accept maize in place of sugar cane	1
	f	i	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}$	Accept displayed/structural formulae) Accept word equation If both word and chemical equation given both must be correct	1
		ii	dehydration / elimination		1
				Total 10 marks	

Question number				Answer	Notes	Marks
5	a		$\begin{aligned} & \text { M1 } \\ & \text { M2 } \\ & \text { M3 } \end{aligned}$	(after) 22.3 (before) 16.7 (change) $(+) 5.6$	All answers must be to $0.1{ }^{\circ} \mathrm{C}$ Penalise addition of trailing zero once only Award 1 mark for two correct readings in the wrong order M3 CQ on temperature readings Ignore units	3
	b	i	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	$\begin{aligned} & 100 \times 4.2 \times 4.9 \\ & 2058 \end{aligned}$	Accept answer to 2 or 3 sf eg 2060 / 2100 Accept answer in kJ if unit given Ignore signs Allow 1 mark for correct calculation based on incorrect temperature change	2
		II	M1 M2	$\begin{aligned} & \frac{6.3}{134} \\ & 0.047 \end{aligned}$	Accept 1 or more sig figs, eg 0.05 Correct answer with no working scores 2	2

| Question
 number | | Answer | Notes | Marks |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |

Question number	Answer	Notes	Marks		
6	a		too reactive / very reactive OR high in the reactivity series	Accept words with equivalent meaning eg highly	1
	b	i	B (stage 2)		
		ii	calcium chloride / CaCl_{2}	If both name and formula given, mark name only	1
		Accept free to move Accept move to electrodes (allow even if incorrect electrodes) (they / the ions) are mobile	1		

				Answer	Notes	Marks
6	d		M1 M2 M3 M4 M5	Mix magnesium oxide and sulfuric acid (and heat) Use excess MgO Filter (before heating to remove some water) Heat (the solution) to remove some water / for a short period of time Leave to crystallise	If heated to dryness, no M4 or M5 Allow place in a warm oven (to evaporate the excess water) to form crystals	5

