

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International GCSE in Chemistry (4CHO) Paper 1CR

Pearson Edexcel International in Science Double Award (4SCO) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4CH0_1CR_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

	iestio imbei		Answer Notes M	Marks
1	а	atomic number	Accept proton number Accept number of protons	1
	b	(relative) atomic mass	Reject mass number	1
	С	electrons		1
	i	electrons		1
	i	protons AND neutrons	Names can be in either order	1
	į	protons AND electrons	Names can be in either order	1
	\	neutrons		1

Question number	Answer			Notes	Marks
2 a	Change of state	State symbol before change	State symbol after change	M1 I AND g in first rowM2 g AND s in second rowM3 s AND g in third row	3
	Water boils in a kettle	I	g	Accept upper case letters, eg S in	
	Ethene is converted to poly(ethene)	g	s	place of s Accept words, eg liquid in place of l Accept answers in brackets	
	Crystals of iodine sublime on heating	s	g		
b	CaCO ₃ (s) + 2HCl(aq) → CaCl ₂	(aq) + H ₂ O(I) + CO ₂ (g)	Award 1 mark for s and g correct Award 1 mark for other 3 correct Accept upper case Reject words	2
С	s / solid			Accept upper case S in place of s	1

Question number	Answer Notes	Marks
3 a	D / simple distillation	1
b	C / fractional distillation	1
С	B / filtration	1
d	A / crystallisation	1

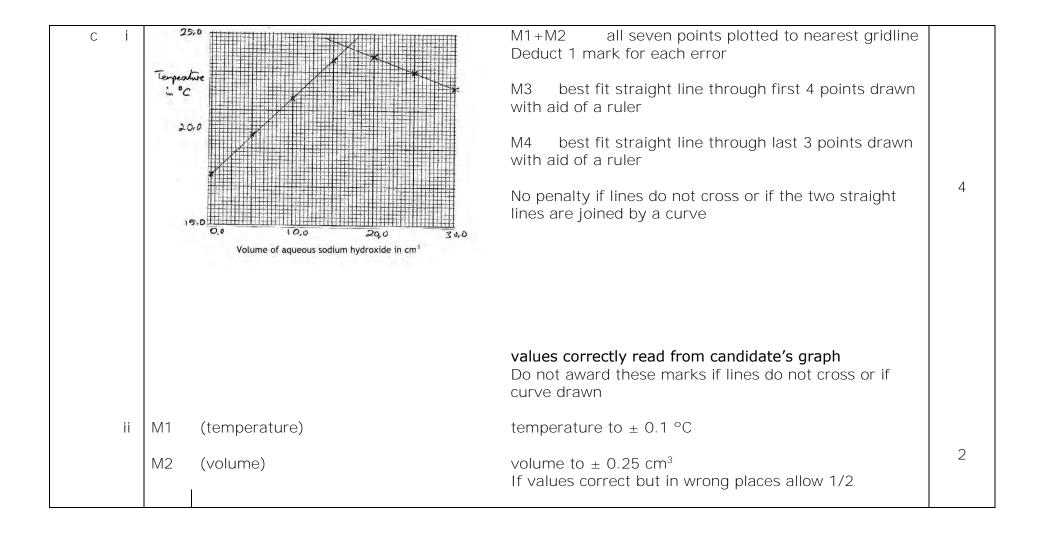
Question number		Answer	Notes	Marks
4 a	C (green)			1
b	value in range 120 - 250		If range given, it must be wholly within 120 - 250	1
С	(colour) dark(er) grey / black (state) solid		Do not accept grey alone Reject any other colour given with black eg blue/black Ignore just darker than iodine Accept correct state symbol	2
d	C (outer electrons)			1
е	Incorrect word	Correct word	one mark for each correct row	
	positive	negative	Accept minor variations and alternatives and extra words	
	potassium	sodium	eg for negative, accept negatively / minus eg for oxidising, accept oxidation /	3
	reducing	oxidising	electron acceptor /oxidating Accept potassium bromide and sodium bromide Accept K for potassium and Na for sodium	

Question number	Answer	Notes	Marks	
5 a i	to prevent spots/them dissolving/mixing (in the solvent) / OWTTE	Accept substance(s)/pigment(s)/dy e(s) for spots Ignore references to diffusion/absorption Ignore references to spots smudging/running Accept spots would be washed off/away Ignore water for solvent	1	
ii	Any two from:			
	M1 evaporation /loss of solvent / OWTTE	Accept water for solvent Ignore gas escaping		
	M2 risk of fire	Ignore it is flammable only		
	M3 fumes may be toxic/poisonous	Ignore harmful/dangerous	2	
		Ignore references to substances entering tank/spillage Ignore references to reaction with air		

b	M1 cross in box A (chlorophyll is not present in carrots, sweet potatoes or tomatoes) M2 cross in box C (both beta-carotene and lycopene are present in sweet potatoes) M3 cross in box E (Both carrots and tomatoes contain a pigment other than beta-carotene, chlorophyll and lycopene)	If more than three answers given mark on list principle: eg four answers given with 3 correct and 1 incorrect scores 2 marks eg all five answers given so 3 correct and 2 incorrect scores 1 mark	3
С	M1 (distance between start line and solvent front) = 6(.0)		
	M2 correct evaluation of R_f value $1.3/6.0 = 0.22$	Accept answer to 1 or more dp, eg 0.2, 0.217,	
		Accept 0.216recurring Reject 0.216	
		correct answer with no working scores 2	2
		M2 CQ on M1	
d	(there is a substance in sweet potatoes that) does not dissolve/is insoluble (in the solvent)	Ignore mix Ignore water for solvent Reject not very soluble/partially soluble	1

Question number	Answer	Notes	Marks
6 а	covalent	Ignore references to polar bonding and electron sharing	1
		Accept bonds for forces for both M1 and M2 Reject atoms for both M1 and M2	
b	M1 weak forces (of attraction) between molecules / weak intermolecular forces	Accept particles for molecules Accept correctly named IMF eg van der Waals'	
	M2 (therefore) little (thermal/heat) energy required to overcome the forces / separate the molecules	Ignore more easily separated / easier to break	2
	molecules	if any reference to/implication of breaking covalent or ionic bonds scores 0/2	
		M1 and M2 indep	
С	M1 (strong) attraction between bonding/shared pair of electrons		
	M2 (and) nuclei of (both atoms)	Do not award M2 if reference to only one nucleus	
	OR		2
	M1 bonding/shared pair of electrons M2 (strongly) attracted to nuclei (of both atoms)		
		Do not award M2 if reference to only one nucleus	

d	H _x (M1 for 2 electrons shared between one H and one CI	
			M2 rest of molecule fully correct	
			M2 DEP on M1	
			Accept any combination of dots and crosses Ignore inner shells of electrons in chlorine	2
			if overlapping touching/circles are used both electrons must be within the overlapping/touching area	
			symbols do not need to be shown if overlapping touching /circles are used	
е	M1	(effervescence) due to hydrogen (gas)		
	M2	solution A is acidic / contains H+ / contains hydrochloric acid		
	M3	solution B is not acidic / does not contain H ⁺ / does not contain hydrochloric acid	Accept hydrogen chloride/HCl does not ionise/dissociate	
			If only reference to HCI ionises/dissociates allow max one mark for M2 and M3, ie reference to either H+ or acid(ic) needed to score both marks	3
			Ignore the bonds between H and CI are not broken (when HCI dissolved) in methylbenzene	
			Do not award M3 if any reference to methylbenzene reacting or dissociating	


Question number	Answer	Notes	Marks
7 a	M1 (they/all) contain hydrogen and carbon (atoms)	Accept H and C Accept particles/elements in place of atoms Reject ions/molecules/compounds in place of atoms Reject element instead of they/all Reject H ₂ Reject mixture	2
	M2 only	Accept words with other meaning (eg solely/ exclusively) M2 DEP on reference to hydrogen and carbon even if M1 not awarded	
b	double bond	Accept multiple in place of double Accept contain C=C Ignore references to single bonds	1
С	A		1
d	B and E and F	All three correct scores 2 marks Two correct scores 1 mark If more than three answers given lose one mark for each error eg BCEF scores 1 mark	2
е	because it has no double bond(s) / has only single bonds / is saturated	Accept because only unsaturated compounds decolourise bromine water Accept because only alkenes decolourise bromine water Accept because it's not an alkene Accept because it's not unsaturated Accept because it's a (cyclo)alkane	1

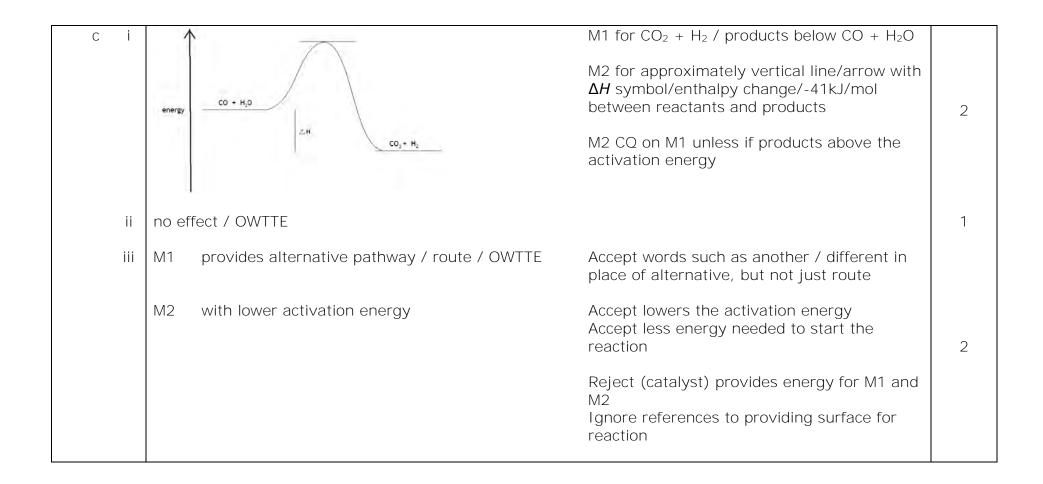
Question number	Answer			Notes		Marks
7 f i	M1 for setting out calculation If division upside down or division by one or more atomic numbers, then 0/3	C <u>22.2</u> 12	H <u>3.7</u> 1	Br <u>74.1</u> 80		
	M2 for obtaining ratio Accept any number of sig figs except one Allow 0.92	1.85	3.7	0.93		
	M3 for whole number ratio M3 DEP on M2	2	: 4	: 1		
	allow alternative method:					3
	M1 calculation of $M_r C_2H_4Br = 108$					
	M2 expression for % of <u>each</u> element eg C: 24/108 x100					
	M3 evaluation to show these equal 22.2%, 3.7%, 74.1%					
ii	M1 $((2\times12) + (4\times1) + (1\times80) =) 108$					
	M2 (216 \div 108 = 2) (so molecular formula is) $C_4H_8Br_2$	correct	answer with n	o working score:	s 2	2

Question number	Answer	Notes	Marks
8 a i	2 NdF ₃ + 3 Ca → 2 Nd + 3 CaF ₂	Accept fractions and multiples	1
ii	calcium fluoride AND neodymium fluoride (in either order)	Accept formulae	1
iii	ionic	Accept electrovalent Ignore giant Ignore electron transfer Reject covalent bonding/ intermolecular forces	1
iv	Nd_2O_3	penalise incorrect use of symbols and subscripts	1

b	M1	(neodymium ions in) layers/rows/planes/sheets/OWTTE	Accept atoms/cations/particles for ions Reject molecules	
	M2	slide/slip (over each other)	Allow OWTTE, eg flow/shift/roll/move	
			M2 DEP on mention of EITHER layers or equivalent OR mention of ions or equivalent	
			Do not award M2 if molecules/protons/electrons/nuclei in place of ions etc	4
			If reference to ionic bonding / covalent bonding /molecules / intermolecular forces, no marks	
	M3	delocalised electrons OR sea of electrons	Not just electrons Ignore free electrons	
	M4 (whe	(can) flow/travel/move (through structure) / are mobile n voltage/pd is applied)	Ignore carry charge M4 DEP on M3 or near miss	

uestion number	Answer	Notes	Marks
а	(polystyrene is an) insulator / prevents/reduces heat loss	Accept is a poor conductor (of heat) Accept keeps heat in Accept doesn't conduct (heat) as well (as glass) Ignore does not heat up Ignore references to accuracy/safety/breakages Reject to keep the temperature constant	1
b	M1 (after) 19.4(0) M2 (before) 15.9(0) M3 3.5(0)	If readings are correct but in the wrong order, award 1 mark for M1 and M2 M3 CQ on (M1 - M2)	3
	M3 3.5(0)	M3 CQ on (M1 - M2)	

Question number		Answer	Notes	Marks
9 d	M1 M2	mass = 47.7 (g) temperature change = 5.8 (°C)		
	M3	(47.7 × 4.2 × 5.8 =) 1200 (J)	Accept 1160, 1162, 1161.97, 1161.972 Reject 1161.9 M3 CQ on M1 and M2 answer correct to two or more sig fig	3
			Correct final answer with or without working scores 3 marks Accept answer in kJ if unit included Ignore sign	


Question number	Answer	Notes	Marks
10 a i	M1 $n(Na_2S_2O_3) = 0.300 \times 20$ OR 0.006(0) mol 1000 (= $n(SO_2)$) M2 M r of $SO_2 = 32 + (2 \times 16)$ OR 64		3
	M3 mass of $SO_2 = (0.006 \times 64) = 0.38$ (g)	Mark CQ throughout Accept any number of sig fig Correct final answer with or without marking scores 3 marks	
ii	M1 mass of SO_2 in 1 dm ³ = $0.38(4) \times 1000$ 50	M1 CQ on M3 in ai	
	= 7.6(8) (g)	Accept any number of sig fig	
	M2 this is less than 100 so no SO ₂ will escape	If candidate value for M1 is greater than 100, award M2 for opposite argument If no answer to M1 then M2 cannot be awarded	
	OR		
	M1 volume of solvent is 50cm^3 which would dissolve $(100/20) = 5(g)$ M2 0.384(g) is less than 5(g) so no SO ₂	If answers based on volume of solvent = 20cm ³ eg 20cm ³ which would dissolve (100/50) = 2(g) 0.384(g) is less than 2(g) so no SO ₂ would	
	would escape	escape worth 1 mark	

b	as the (hydrochloric) acid/HCI is added	Allow (immediately) after (all) the acid/HCI added Ignore when the solutions are mixed	1
c i	timer started too late / stopped too early OR		1
	thermometer (scale) read incorrectly / timer read incorrectly	Allow misread/incorrectly recorded the temperature/time	
ii	19.5 (s)	Accept range 19-20	1

Question number	Answer	Notes	Marks
10 d i	M1 times are (very) short	Accept reaction happens too/very/so quickly (so hard to time accurately/precisely) Ignore reaction is quicker Ignore hard(er) to measure rate Allow human reaction time becomes significant Allow references to shorter times producing greater percentage (measurement) uncertainties/errors	2
	M2 heat loss greater	Accept heat loss occurs more quickly Accept difficult to maintain a higher temperature/keep temperature constant Ignore references to evaporation occurring	
ii	M1 more collisions/particles have energy equal to/greater than the activation energy	Ignore particles have more (kinetic) energy Ignore harder/more vigorous collisions Ignore references to speed of particles	
	M2 (therefore there are) more successful collisions (per second)	if state activation energy is lowered scores 0/2 references to concentration scores 0/2	2

е	Any	three from		
	M1 M2 M3 M4	total volume of the reference to apparatus Ignore references to apparatus Ignore references to apparatus Ignore references to apparatus	scored allow 1 mark for mixture OR e flask volume of water o size of flask/same d distance of eye from flask/	3
		Ignore references to the X/references to	9	

Question number	Answer	Notes	Marks
11 a	$CH_4 + H_2O \rightarrow CO + 3H_2$	Accept fractions and multiples	1
b i	M1 (increased pressure) has no effect (on yield) M2 because equal numbers of (gas) moles/molecules on each side	Ignore no effect on other factors eg equilibrium (position) Do not award M2 if M1 is incorrect	2
ii	 M1 (at higher temperature equilibrium position shifts to left so yield of hydrogen) decreases M2 because (forward) reaction is exothermic 	Accept because backward reaction is endothermic Accept because reaction moves in the endothermic direction Ignore references to Le Chatelier's principle eg increase in temperature favours the endothermic reaction Do not award M2 if M1 is incorrect	2

Question number		Answer	Notes	Marks
11 d	M1	identifying reaction 3 or reaction 4	Ignore reactions 5 and 6	
	M2	a correct explanation for either eg		2
		in reaction 3, there is gain of hydrogen	Accept increase in oxidation number of H / changes from 0 to (+)1 Accept decrease in oxidation number of N / changes from 0 to -3 Ignore references to gain/loss of electrons	
		in reaction 4, there is gain of oxygen	Accept decrease in oxidation number of O/changes from 0 to -2 Accept increase in oxidation number of N / changes from -3 to (+)2 Ignore references to gain/loss of electrons Ignore other explanations	
			Allow:	
			Identifying both Reaction 3 and 4 <u>only</u> for 2 marks Ignore any explanations	

е	M1 $n(NH_3) = 34 \times 1000 = 2000 \text{ (mol)}$		
	M2 M_r (NH ₄ NO ₃) = 80 M3 mass (NH ₄ NO ₃) = 80 × 2000 = 160 000 g / 160 kg	Correct final answer with or without working scores 3 marks	
	OR	Do not award M3 if unit missing or incorrect	
	$M1 \qquad M_r \text{ (NH}_4 \text{NO}_3) = 80$	Mark CQ throughout	3
	M2 (so) 17 (kg NH ₃) gives 80 (kg NH ₄ NO ₃)		
	M3 (so) 34 (kg NH ₃) gives <u>80</u> x 34 = 160 kg 17 / 160 000 g		

	Question number		Answer	Notes	Marks
12	а	i	fuel oil		1
		ii	fuel oil		1
		iii	gasoline		1
	b	İ	alumina / silica	Accept aluminosilicates/zeolites Accept aluminium oxide/silicon dioxide/silicon oxide/silicon (IV) oxide Accept correct formulae	1
		ii	M1 for correct formula - C ₄ H ₈	Accept C ₄ H ₈ + C ₄ H ₈ for 2 marks	
			M2 for correct coefficient - 2	Award 1 mark for 4C ₂ H ₄	
				Award 1 mark for C ₈ H ₁₆	
				Award 1 mark for two alkenes which have a total of 8C and 16H eg $C_3H_6 + C_5H_{10}$	2

iii	M1	over/greater supply of long-chain hydrocarbons/molecules/ heavy/heavier fractions / OWTTE	Accept long chain hydrocarbons/molecules heavy/heavier fractions are of less use (as fuels)	
	M2 M3	high demand/more use for short-chain/small hydrocarbons/ light/lighter fractions / OWTTE Alkenes used to make polymers	Accept answers in terms of petrol / fuel (for cars) Short chain hydrocarbon molecules are more useful/in greater demand than long chain hydrocarbons/molecules scores M1 and M2 Accept specific alkene and product eg ethene to make poly(ethene)/ethanol/alcohol	3
			Les Division and a series of the series of t	
С	M1 M2	forms sulfur dioxide (when burned) which causes specified problem for environment OR specified problem for humans	eg acid rain / damages trees / kills fish eg toxic / respiratory irritant / triggers asthma attacks Ignore harmful gas	2

Question number	Answer	Notes	Marks
12 d	H H H H	M1 for only two (of the four) carbon atoms both with two H eg -CH ₂ -CH ₂ -CH ₂ -CH ₂ -scores 0 M2 for (the other) two carbon atoms each with one H and one CH ₃ No M2 if methyl groups on 1st + 2nd, or on 3rd + 4th carbons in chain Do not penalise bonds to H of CH ₃ Max 1 if chain extended correctly Ignore brackets and n each carbon must have four bonds eg -CH ₂ -CH-CH ₂ - scores 0 if terminal Hs added max 1 O/2 if any double bonds shown	2

