## edexcel

Mark Scheme (Results)

## Summer 2016

Pearson Edexcel International GCSE in Chemistry (4CHO) Paper 2CR

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

## Summer 2016

Publications Code 4CH0_2CR_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 2 a | M1 oxygen / air <br> M2 water (vapour) / moisture | ACCEPT $\mathrm{O}_{2}$ but not O <br> ACCEPT $\mathrm{H}_{2} \mathrm{O}$ IGNORE steam | 2 |
| b | (hydrated) iron(III) oxide | ACCEPT iron oxide / ferric oxide REJECT ferrous oxide and iron with other oxidation numbers IGNORE iron trioxide <br> ACCEPT $\mathrm{Fe}_{2} \mathrm{O}_{3}\left(. \mathrm{xH}_{2} \mathrm{O}\right)$ IGNORE all other formulae <br> If both name and formula given mark name only | 1 |
| c | M1 (galvanising) bucket / car body / <br> railway bridge | DO NOT AWARD M3 for car body/railway bridge if already scored for M1 | 3 |
|  | M2 (oiling) bicycle chain / car <br> engine <br> M3 (painting) car body / railway <br> bridge |  |  |
| d | M1 zinc corrodes/oxidises/reacts in preference to iron <br> M2 (because) zinc is more reactive than iron / zinc (atoms) lose electrons more readily (than do iron atoms) | REJECT zinc rusts IGNORE reference to sacrificial protection ACCEPT for M1 zinc atoms react with iron(II) ions <br> ACCEPT for M2 iron(II) ions are converted to iron atoms | 2 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 3 a | C (nitrogen) |  | 1 |
| b | A (argon) |  | 1 |
| c | M1 (formula) CuO <br> M2 (colour) black | ACCEPT correct formula as a product of an equation. The equation need not be balanced IGNORE names <br> IGNORE brown REJECT all other colours | 2 |
|  | C (dilute hydrochloric acid) <br> A (calcium carbonate) <br> in a (gas) syringe / downward delivery in air | ALLOW downward delivery | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| e i | $\mathrm{CO}_{2}(\mathbf{g})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathbf{a q}) \rightarrow \mathrm{CaCO}_{3}(\mathbf{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ | ACCEPT upper case letters IGNORE words | 1 |
| e ii | white precipitate forms / liquid goes milky/cloudy | ACCEPT usual alternatives for precipitate | 1 |




| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $5 \text { c i }$ <br> ii | pink $\mathrm{OH}^{-} / \mathrm{HO}^{-}$ | ALLOW red IGNORE purple | 1 <br> 1 |
| d | M1 potassium loses its outer/valence electron more easily/readily <br> M2 because it is further from (the attraction of) nucleus (and therefore less strongly attracted to the nucleus) | IGNORE references to more shells / larger atomic radius / more shielding / more screening <br> ACCEPT reverse arguments as long as it is clear that lithium is being considered | 2 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 6 a | M1 twice as much/more carbon dioxide removed (per mole reacted) <br> M2 produces oxygen (for breathing) | ACCEPT reverse arguments for both M1 and M2 eg lithium hydroxide removes less $\mathrm{CO}_{2}$ and does not produce oxygen scores 2 <br> IGNORE references to the need to remove water in reaction 1 | 2 |
| b i | M1 $n\left(\mathrm{CO}_{2}\right)=\frac{100}{44}$ OR $2.27(27 \ldots).(\mathrm{mol})$ <br> M2 $n(\mathrm{LiOH})=$ answer to M1 $\times 2$ OR 4.54(54.....) (mol) <br> M3 $\mathrm{m}(\mathrm{LiOH})=($ answer to $\mathbf{M 3} \times 24)=110(\mathrm{~g})$ <br> OR <br> M1 48 ( g ) reacts with 44 ( g ) <br> M2 $\quad \mathrm{x}(\mathrm{g})$ reacts with $100(\mathrm{~g})$ <br> M3 $x=110(g)$ | ACCEPT any number of sig figs except one eg 109 / 109.1 / 109.09 / 109.0909........ <br> Award 3 marks for correct final answer without working <br> 108.96 (from 2.27) scores 3 marks <br> 110.4 (from 2.3) scores 3 marks | 3 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 6 b ii | M1 $n\left(\mathrm{Li}_{2} \mathrm{O}_{2}\right)=\frac{100}{46}=2.17(3913 \ldots) \mathrm{mol}\left(=n \mathrm{CO}_{2}\right)$ <br> M2 volume of $\mathrm{CO}_{2}=$ answer to $\mathbf{M 1} \times 24000$ <br> M3 $=52000\left(\mathrm{~cm}^{3}\right)$ | ACCEPT any number of sig figs except one eg $52170,52174,52173.9$, etc <br> Award 3 marks for correct final answer without working <br> 52080 (from 2.17) scores 3 marks <br> 52800/53000 (from 2.2) scores 3 marks | 3 |


| Question <br> number | Answer | Notes | Marks |
| :--- | :--- | :--- | :--- | :---: |
| 7 a | M1 (step 1) nitric acid <br> M2 (step 2) magnesium carbonate is insoluble / magnesium <br> carbonate does not form a solution | ACCEPT sulfuric acid should be used <br> REJECT the use of reagents that <br> would not work, eg magnesium <br> chloride | 3 |




