edexcel

Mark Scheme (Results)
Summer 2016

Pearson Edexcel International GCSE in Chemistry (4CH0 2C)

Pearson Edexcel Level 1/Level 2 Certificate in Chemistry (KCHO 2C)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4CHO_2C_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	M1 (X) - (stirring/glass/ plastic) rod M2 (Y) - Bunsen (burner)	Accept stirrer Reject metal	2
(b) (i) (ii)	C (solvent) B (solution)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c) (i) (ii)	2 3		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(d)	evaporated / went into the air	accept boils accept turns into vapour	1

$\begin{array}{l}\text { Question } \\ \text { number }\end{array}$	Answer	Notes	Marks
2 (a)	M1 iron reacted with oxygen	$\begin{array}{l}\text { Accept iron } \\ \text { combined/bonded } \\ \text { with oxygen } \\ \text { Accept iron oxide } \\ \text { formed } \\ \text { Accept iron is } \\ \text { oxidised } \\ \text { Ignore iron uses } \\ \text { oxygen } \\ \text { Ignore iron rusts } \\ \text { Ignore references } \\ \text { to reacting with } \\ \text { water }\end{array}$	2
M2 all oxygen is reacted / (all)			
Accept references			
to 20\% or 20cm			

(c)	M1 $\left(\mathrm{Fe}^{2+}\right)$ - green precipitate/solid	ignore shades reject other colours eg blue- green	2
M2 $\left(\mathrm{Fe}^{3+}\right)$ - brown precipitate/solid	accept red-brown lorange brown Ignore rust coloured		
reject red on its own	Allow 1 mark if both answers correct but reversed	Ignore references to colours of solutions	

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
3(a)
\] \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{Na} /\) sodium / Mg / magnesium \\
Si / silicon / P / phosphorus / S / sulfur / \(\mathrm{Cl} /\) chlorine
\end{tabular} \& \begin{tabular}{l}
Ignore name and formula of compound \\
Accept aluminium If both name and formula given both must be correct \\
If both name and formula given both must be correct
\end{tabular} \& 1

1

\hline | (b) (i) |
| :--- |
| (ii) | \& | M1 correct electronic configuration for magnesium ion and correct charge on ion |
| :--- |
| M2 correct electronic configuration for both chloride ions |
| M3 correct charges on both chloride ions |
| M1 electrostatic attraction/forces between ions |
| M2 of opposite charge | \& | Allow electrons on brackets |
| :--- |
| Allow any combination of dots and crosses |
| Allow 0 or 8 electrons in outer shell |
| M3 indep |
| accept positive | \& 3

2

\hline
\end{tabular}

(iii)	M1 attraction (between ions) is strong M2 lots of ions (in structure) / giant structure / lattice / lots of/many bonds M3 (therefore) lot of (thermal/heat) energy required to overcome attraction / to break down the lattice	and negative ions accept cations and anions M2 dep on M1 Accept attraction/forc es between oppositely charged ions for 1 mark only Reject references to atoms/molecul es/IMF for M1 and M2 Accept strong (ionic) bonding/strong (ionic) bonds Accept lot of (thermal/heat) energy required to break (ionic) bonds If any reference to attraction between atoms/molecul es/electrons scores 0/3 If any reference to covalent bonding/covale nt structure/IMF scores 0/3	3
(c)		Correct answer with or without working scores 2 marks	2

	M1 mol Al $=20 / 3(=6.67)$ M2 mass $\mathrm{Al}=($ answer to $\mathrm{M} 1 \times 27)=180$ (g) OR M1 3 faradays give 1 mol OR $27 \mathrm{~g} /$ 30 faradays give 10 mol OR 270 g M2 20 faradays gives 180 (g)	M2 CQ on M1 eg 540 scores 1 mark 6.67 gives 180(.09) scores 2 marks 6.7 gives $180.9=181$ scores 2 marks 6.66 gives 179.82 scores M2 only Accept any number of sig fig except 1

Question number	Answer	Notes	Marks
$4 \text { (a) }$ (b) (i)	$\mathrm{CuO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$ to increase the rate of reaction	I gnore state symbols ignore references to dissolving/solubillty	
(b) (ii)	(copper(II) oxide/it) stops disappearing/ stays as a solid / forms as a solid (at the bottom of the beaker)	Accept stops dissolving / forms a suspension /forms a residue Accept when copper oxide remains/settles in the beaker Allow liquid goes cloudy/black ignore references to stops reacting ignore references to bubbling	1
(iii)	a drop of solution forms crystals when removed (and cooled)	Accept when crystals start to form/start to be seen Reject if all water evaporated	1
(iv)	(stage) 3	accept any reference to first filtration stage	1

Question number	Answer	Notes	Marks
6 (a)	titration / volumetric analysis		1
(b)	C (25 cm ${ }^{3}$ pipette)		1
(c)	M1 (before) - yellow M2 (after) - orange	accept pink / red and combinations with orange Allow 1 mark if correct colours reversed	2
(d)	after adding acid 23.60 before adding acid 2.75 volume added 20.85 M1 23.60 M2 2.75 M3 20.85	If readings are correct but in the wrong order, award 1 mark for M1 and M2 M3 CQ on (M1 - M2)	3
(e) (i) (ii)	22.90 22.60 22.45 22.55 \checkmark \checkmark \checkmark M1 $(22.60+22.45+22.55) \div 3$ M2 $22.53\left(\mathrm{~cm}^{3}\right)$	Correct final answer with no working scores (2) Accept 22.53 with 3 recurring If no results ticked in (i), then only use of two or three concordant titres can score in (ii) If only one result ticked, then no marks can be scored in (ii) Otherwise, both marks CQ on ticked results in (e)(i) Answer with zero as 2nd dp does not need trailing zero	1 2

		Answers obtained by averaging other titre values do require answers to 2 dp	

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 7 (a) \& (refinery) gases \& \& 1 \\
\hline (b) \& bitumen \& \& 1 \\
\hline \begin{tabular}{l}
(c) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{C}_{18} \mathrm{H}_{38} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{10} \mathrm{H}_{20}\) \\
OR
\[
\mathrm{C}_{18} \mathrm{H}_{38} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+2 \mathrm{C}_{5} \mathrm{H}_{10}
\] \\
OR
\[
\mathrm{C}_{18} \mathrm{H}_{38} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+5 \mathrm{C}_{2} \mathrm{H}_{4}
\] \\
Any two from: \\
M1 over/greater supply of long chain hydrocarbons/molecules/ heavy/heavier fractions / OWTTE \\
M2 high(er) demand/more use for short-chain/small hydrocarbons/ light/lighter fractions/ OWTTE \\
M3 reference to a use eg the alkenes produced can be used to make polymers/plastics / eg the shortchain (saturated) hydrocarbons used as fuels
\end{tabular} \& \begin{tabular}{l}
Accept reverse argument eg not enough short chain hydrocarbons \\
Accept specific alkene and product eg ethene to make poly(ethene)/ethanol/alcohol Accept answers in terms of gasoline/petrol / fuel (for cars)
\end{tabular} \& 1

2

\hline (d) \& | $\mathrm{C}_{8} \mathrm{H}_{18}+8 \frac{1}{2} \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O}$ |
| :--- |
| M1 correct formula for CO |
| M2 correct balanced equation |
| M2 dep on M1 | \& | Allow multiples |
| :--- |
| Accept balanced equations containing CO as well as C and/or CO_{2} eg $\mathrm{C}_{8} \mathrm{H}_{18}+$ $6.5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+4 \mathrm{C}+9 \mathrm{H}_{2} \mathrm{O}$ | \& 2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
8 (a)	M1 ($\mathrm{mol} \mathrm{NaHCO} 3=$) $10.5 / 84$ or 0.125 M2 (so mass $\mathrm{CO}_{2}=0.0625 \times 44=$) 2.8 OR M1 $168 \mathrm{~g} \mathrm{NaHCO}_{3}$ give $44 \mathrm{~g} \mathrm{CO}_{2}$ M2 $10.5 \mathrm{~g} \mathrm{NaHCO}_{3}$ give $2.75 \mathrm{~g} \mathrm{CO}_{2}$	correct final answer with no working scores 2 accept 2.75 M2 CQ on M1	2
(b)	M1 $\quad\left(\mathrm{mol} \mathrm{CO}_{2}=\right) 2.75 \div 44$ or 0.0625 M2 $(0.0625 \times 24000)=1500\left(\mathrm{~cm}^{3}\right)$	correct final answer with no working scores 2 if answer is incorrect mark CQ to (a) CQ answer to M1 accept $1.5(00) \mathrm{dm}^{3}$	2

