GCSE

Chemistry A

Unit J248H/03: Higher Tier - Paper 3
General Certificate of Secondary Education

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
A	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Atatements which are irrelevant
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Orternative wording
ORA	Oreverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Chemistry:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a AO3.1b Analyse information and ideas to interpret. AO3.2 Analyse information and ideas to evaluate. AO3.2a Analyse information and ideas to make judgements. AO3.2b Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3b	Analyse information and ideas to develop experimental procedures.

SECTION A

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

Question		Answer	Marks	AO element	
$\mathbf{1}$		C \checkmark	$\mathbf{1}$	1.2	
$\mathbf{2}$		C \checkmark	$\mathbf{1}$	1.1	
$\mathbf{3}$		A \checkmark	$\mathbf{1}$	1.1	
$\mathbf{4}$		C \checkmark	$\mathbf{1}$	1.1	
$\mathbf{5}$		D \checkmark	$\mathbf{1}$	2.1	
$\mathbf{6}$		C \checkmark	$\mathbf{1}$	1.1	
$\mathbf{7}$		A \checkmark	$\mathbf{1}$	1.1	
$\mathbf{8}$		A \checkmark	$\mathbf{1}$	1.2	
$\mathbf{9}$		B \checkmark	$\mathbf{1}$	1.1	
$\mathbf{1 0}$		C \checkmark	$\mathbf{1}$	1.1	
$\mathbf{1 1}$		C \checkmark	$\mathbf{1}$	1.2	
$\mathbf{1 2}$		C \checkmark	$\mathbf{1}$	1.1	
$\mathbf{1 3}$		D \checkmark	$\mathbf{1}$	1.1	
$\mathbf{1 4}$		C \checkmark	$\mathbf{1}$	1.1	
$\mathbf{1 5}$		C \checkmark	$\mathbf{1}$	1.1	

SECTION B

Question			Answer	Marks	AO element	Guidance
16	(a)	(i)	Particles close together / particles compact / particles already touching / particles tightly packed / AW \checkmark	1	1.1	ALLOW idea of particles with no spaces between them ALLOW any type of particles Mark can be awarded from a diagram IGNORE particles are in fixed positions IGNORE particles are in a regular arrangement / particles are in a lattice IGNORE intermolecular forces
	(a)	(ii)	Any three from: Particles in a solid are in fixed positions \checkmark Particles in a solid vibrate \checkmark Particles in a liquid can move (past each other) \checkmark as forces between particles in a liquid are less than in a solid \checkmark	3	3×1.1	ALLOW any type of particles ALLOW particles in a solid cannot move (past each other) IGNORE solid cannot flow, but ALLOW particles in a solid cannot flow IGNORE particles move around on the spot IGNORE liquid can flow, but ALLOW particles in a liquid can flow ALLOW liquid particles have enough energy to overcome attractions (between particles) DO NOT ALLOW no forces between particles IGNORE intermolecular forces

Question		Answer	Marks	AO element	Guidance
(a)	(iii)	Any two from: Particles are moving quickly (in all directions) \checkmark Particles are far apart \checkmark Particles spread out Weak forces between the particles \checkmark	2	2×1.1	ALLOW any type of particles ALLOW particles can move freely or randomly ALLOW M2 from a diagram showing no particles touching IGNORE intermolecular forces IGNORE no forces between particles
(b)		$\mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ Correct formulae \checkmark Balancing \checkmark	2	$\begin{aligned} & 1.1 \\ & 2.2 \end{aligned}$	Balancing mark is conditional on correct formulae ALLOW $=$ or \rightleftharpoons instead of \rightarrow DO NOT ALLOW and or \& instead of + ALLOW any correct multiples including fractions $\text { e.g. } 2 \mathrm{Mg}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{H}_{2}$ ALLOW one mark for correct equation with minor errors in case, subscript or superscript e.g. $\mathrm{MG}+2 \mathrm{H}^{2} \mathrm{O} \rightarrow 2 \mathrm{Mg}(\mathrm{OH}) 2+\mathrm{H}_{2}$ IGNORE state symbols
(c)		$148.3 \checkmark$	1	2.2	ALLOW 148

Question		Answer			Marks	AO element	Guidance
17	(a)	ANY FOUR FROM: Titration \checkmark Put acid in burette \checkmark Pipette (a known volume of) sodium hydroxide into flask \checkmark Use a (named) indicator / use of a pH meter \checkmark Add acid to sodium hydroxide until colour of indicator changes \checkmark Repeat (to get an accurate value) \checkmark Repeat again with no indicator \checkmark Evaporate (off the water) / crystallise \checkmark			4	$4 \times 3.3 \mathrm{a}$	ALLOW other methods involving adding acid to sodium hydroxide solution using the principles outlined on the LHS eg ALLOW mix or react acid with alkali ALLOW alkali in burette ALLOW acid in flask DO NOT ALLOW marks in incorrect context
	(b)	$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \checkmark$			1	2.2	ALLOW $=$ or \rightleftharpoons instead of \rightarrow DO NOT ALLOW and or \& instead of + ALLOW any correct multiples including fractions IGNORE any state symbols
(c)		Acid used Other starting material Salt made sulfuric acid copper oxide copper sulfate \checkmark nitric acid \checkmark zinc carbonate zinc nitrate hydrochloric acid magnesium oxide/ magnesium hydroxide / magnesium carbonate / magnesium \checkmark magnesium chloride			3	3×2.2	ALLOW correct formulae
	(d)	Neutralisation			1	2.2	

Question		Answer	Marks	AO element	Guidance
18	(a)	Idea that ethanol and /or petrol are flammable So need to use a water bath or heating mantle	2	$2 \times 3.3 \mathrm{~b}$	Marking points are independent ALLOW use an electric heater
	(b)	State of propane is gas \checkmark State of hexane is liquid	2	2×2.1	
	(c)	$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ Correct formulae \checkmark Balancing \checkmark	2	2×2.1	Balancing mark is conditional on correct formulae ALLOW $=$ or \rightleftharpoons instead of \rightarrow DO NOT ALLOW and or \& instead of + ALLOW any correct multiples including fractions $\text { e.g. } 2 \mathrm{C}_{3} \mathrm{H}_{8}+10 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ ALLOW one mark for correct equation with minor errors in case, subscript or superscript e.g. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O} 2 \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ IGNORE state symbols

Question		Answer	Marks	AO element	Guidance
(d)	(i)	sodium ion, Na^{+} oxide ion, O^{2-} Sodium ion drawn correctly \checkmark Oxide ion drawn correctly \checkmark Correct charges on both ions \checkmark	3	3×2.1	ALLOW electrons as all dots, all crosses, or a mix of dots and crosses ALLOW diagrams without inner electron shell, but inner shell must be correct if shown DO NOT ALLOW S for Na or O_{2} for O (for drawing of ions marks) ALLOW answers showing the transfer of electrons providing the same electrons are not shown twice DO NOT ALLOW diagram showing sharing of electrons $=0$ marks
	(ii)	$\mathrm{Na}_{2} \mathrm{O} \checkmark$	1	2.1	DO NOT ALLOW $\mathrm{Na}^{2} \mathrm{O} / \mathrm{Na} 2 \mathrm{O}$ ALLOW correct formula for $\mathrm{Na}_{2} \mathrm{O}$ in an equation (even if unbalanced)

Question		Answer	Marks	AO element	Guidance
20	(a)	Filter to remove the sand \checkmark (as) sand is insoluble in water / sodium chloride is soluble Distil the filtered mixture \checkmark (Solid) sodium chloride stays in flask and pure water condenses \checkmark	4	3.3a 3.1b 3.3a 3.1 b	ALLOW MAX 3 marks if method is in wrong order, eg distillation before filtration ALLOW fractional distillation ALLOW boil and condense for 'distil' DO NOT ALLOW evaporation / crystallisation ALLOW idea that (solid) sodium chloride stays in flask once pure water has evaporated
	(b)	No (no mark) Any two from: Idea that sample 4 has range higher than $110^{\circ} \mathrm{C} \checkmark$ Pure sample of \mathbf{B} cannot have melting point above $110^{\circ} \mathrm{C}$ Idea that pure samples do not melt over a range (of temperatures) / ORA / Pure samples have a specific melting point / ORA \checkmark Impurities lower the melting point \checkmark AND Sample 1 is likely to be most pure	3	$2 \times 3.2 a$ $1 \times 3.2 b$	MAX 2 if answer refers to boiling points IGNORE just 'the melting point of sample 4 is $110-112^{\circ} \mathrm{C}^{\prime}$

Question		Answer	Marks	AO element	Guidance
22		No of moles of $\mathrm{CuO}=0.02$ moles No of moles of $\mathrm{H}_{2}=0.1$ moles No of moles of $\mathrm{Cu}=0.02$ moles No of moles of $\mathrm{H}_{2} \mathrm{O}=0.02$ moles All four correctly calculated BUT two or three correctly calculated \checkmark Limiting reactant is copper oxide \checkmark (because) it is (the starting material that is) present in the smaller quantity \checkmark	4	4×2.1	ALLOW ECF from incorrectly calculated number of moles ALLOW idea of less moles of copper oxide than hydrogen / lower amount of reactant moles / idea that all copper oxide is used up but there is hydrogen left IGNORE just restatement of the number of moles of CuO and H_{2}

| Question | | Answer | MarksAO
 element | Guidance |
| :---: | :---: | :--- | :--- | :---: | :---: |
| $\mathbf{2 3}$ | Any three from:
 Mendeleev's table has no noble gases or Group 8 or
 Group 0 / ORA \checkmark
 Mendeleev's table has no transition elements / ORA \checkmark
 Mendeleev's table has gaps (left for elements to be
 discovered) / no gaps in modern-day table / AW \checkmark
 (Mendeleev's table ordered by atomic mass whereas)
 modern-day table ordered by atomic number \checkmark
 Mendeleev's table doesn't have atomic number (whereas
 modern-day table does) \checkmark
 Mendeleev swapped iodine and tellurium to reflect
 chemical properties \checkmark | ALLOW Mendeleev's table only has 7 groups /
 ORA | | |

Question		Answer	Marks	AO element	Guidance
(d)	Idea that hydrogen is less reactive than sodium / ORA \checkmark So is discharged before sodium / ORA \checkmark	$\mathbf{2}$	2×1.2	ALLOW idea that hydrogen gains electrons more easily (than sodium) / idea that hydrogen is reduced more easily (than sodium) IGNORE hydrogen is made	

Question			Answer	Marks	AO element	Guidance
25	*		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Analyses the information to identify the type of bonding present in all three substances AND provides a correct explanation for all of them There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Analyses the information to identify the type of bonding present in two of the substances AND provides a correct explanation for both of them OR Analyses the information to identify the type of bonding present in all three substances AND provides a partial explanation for at least two of them There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Analyses the information to identify the type of bonding present in one of the substances AND provides a correct explanation OR Analyses the information to identify the type of bonding present in two of the substances AND provides a partial explanation for one of them There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} 2 \times 3.2 \mathrm{~b} \\ 2 \times 3.1 \mathrm{a} \\ 2 \times 2.1 \end{gathered}$	AO3.2b Analyses information to draw conclusions about the three substances - substance \mathbf{A} is covalently bonded - substance \mathbf{A} is simple molecular - substance \mathbf{B} is a covalently bonded - substance \mathbf{B} is a giant covalent structure - substance \mathbf{C} is an ionic compound AO3.1a Analyses information to interpret the type of bonding present in all three substances - substance \mathbf{A} has a low melting point \& boiling point and does not conduct electricity, so is likely to be water or other covalent structure - substance \mathbf{B} has high melting point \& boiling point and is a poor conductor, so is likely to be diamond or other giant covalent structure - substance \mathbf{C} has a high melting point \& boiling point and does not conduct electricity as a solid, but does when molten or dissolved in water, so is likely to be sodium chloride or another ionic compound AO2.1 Applies knowledge and understanding about the information for the three substances to explain the properties - substance \mathbf{A} has a low melting point and boiling point because there are weak intermolecular forces - substance A does not conduct electricity because there are no free electrons or ions - substance \mathbf{B} has high melting point and boiling point because there are many strong covalent bonds - substance B is a poor conductor because there are no free electrons or ions - substance \mathbf{C} has a high melting point and boiling point because there are strong electrostatic forces of attraction between (oppositely charged) ions - substance C does not conduct as a solid because the ions cannot move but does when molten or dissolved in water because the ions can move

Question		Answer	Marks	AO element	Guidance
26	(a)	Number of entities in 1 mole \checkmark	1	1.1	ALLOW number of atoms in 12 g of carbon-12 IGNORE number of atoms in 1 mole of an element If 'number of atoms' or 'number of molecules' in one mole of a substance is stated, then it must be linked to a correct substance eg number of molecules in a mole of oxygen (but not number of atoms in a mole of oxygen)
	(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=2.41 \times 10^{24}$ award 3 marks $\begin{aligned} & 72 \mathrm{~g} \text { of water }=72 / 18=4 \text { moles } \checkmark \\ & \text { number of molecules of water }=4 \times 6.02 \times 10^{23} \\ & \text { or } 2.408 \times 10^{24} \checkmark \end{aligned}$ answer to 3 sig figs $=2.41 \times 10^{24} \checkmark$	3	3×2.1	ALLOW ECF from incorrect number of moles ALLOW ECF if significant figures correct from incorrect calculation of number of moles of water BUT $72 \times 6.02 \times 10^{23}\left(=4.33 \times 10^{25}\right)$ scores 0

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

