Oxford Cambridge and RSA

GCSE (9-1)

Physics A (Gateway)

J249/01: Paper 1 (Foundation Tier)
General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
A	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

USE OF ANNOTATIONS

- If a question part has only one mark (including of course all of section A) then no ticks are needed. Just enter 0 / 1 / \# in Assessor
- If the question part has more than one mark, indicate where each mark is gained by the use of ticks in the appropriate place. Do not use crosses.
- If the mark scheme states, for example

FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.5\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ award 2 marks
Then if the answer is correct, do not put multiple ticks. Just put a single tick next to the [mark total] bracket for that question part.

- For the LOR question (21a), indicate $6,5,4,3,2,1,0$ marks by $\mathrm{L} 3, \mathrm{~L} 3^{\wedge}, \mathrm{L} 2, \mathrm{~L} 2^{\wedge}, \mathrm{L} 1, \mathrm{~L} 1^{\wedge}$ and X . This is the only place where a cross is to be used. Avoid using highlights and suchlike in this question.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics A:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a AO3.1b Analyse information and ideas to interpret.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
Analyse information and ideas to improve experimental procedures.	

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

| Question Answer | | | Marks | AO
 element | Guidance |
| :---: | ---: | :--- | :---: | :---: | :---: | :---: |
| 1 | | C \checkmark | 1 | 1.1 | |
| 2 | | B \checkmark | 1 | 2.2 | |
| 3 | | A \checkmark | 1 | 1.1 | |
| 4 | | B \checkmark | 1 | 2.2 | |
| 5 | | A \checkmark | 1 | 2.2 | |
| 6 | | C \checkmark | 1 | 2.1 | |
| 7 | | C \checkmark | 1 | 1.1 | |
| 8 | | B \checkmark | 1 | 2.1 | |
| 9 | | A \checkmark | 1 | 1.1 | |
| 10 | | C \checkmark | 1 | 2.1 | |
| 11 | | B \checkmark | 1 | 1.1 | |
| 12 | | B \checkmark | 1 | 1.2 | |
| 13 | | C \checkmark | 1 | 2.1 | |
| 14 | | B \checkmark | 1 | 2.1 | |
| 15 | | B \checkmark | 1 | 1.1 | |

For Section B, grey shading in the left-hand column indicates an overlap question: 22 \& 23 here are identical to 16 \& 17 in $\mathrm{J} 249 / 03$

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
16	(a)	(i)	$50(\mathrm{~m})^{\checkmark}$	1	2.2	
		(ii)	60 (s) \checkmark	1	2.2	
		(iii)	Any one from: Tape measure/ Measuring tape \checkmark Trundle wheel	1	1.1	ALLOW Metre ruler / metre stick / metre wheel / surveyors' wheel DO NOT ALLOW ruler ALLOW Fitbit/smartphone app
	(b)	(i)	C It has the steepest line/gradient/slope / greatest change in distance per second / AW	2	$\begin{aligned} & 2.2 \\ & 1.1 \end{aligned}$	ALLOW calculation of all 4 speeds NOT 'highest distance change in shortest amount of time'
		(ii)	B \checkmark The line is horizontal/flat/distance does not change/AW	2	$\begin{aligned} & 2.2 \\ & 1.1 \end{aligned}$	
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.5\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ award 2 marks $\begin{aligned} & v=20 \div 40 \checkmark \\ & v=0.5\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	2	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	Mp2 dependent on correct substitution for mp1

Question			Answer	Marks	AO element	Guidance
17	(a)	(i)	The voltmeter is in series The ammeter is in parallel One of the cells is connected the wrong way round / AW	3	$\begin{aligned} & 3.2 \mathrm{~b} \\ & 3.2 \mathrm{~b} \\ & 3.2 \mathrm{~b} \end{aligned}$	ALLOW reverse arguments: E.g. voltmeter should be in parallel \checkmark E.g. ammeter should be in series \checkmark ALLOW The cells/batteries are incorrectly connected / facing each other
		(ii)	Any one from: Put the voltmeter in parallel with the resistor \checkmark Put the ammeter in series Turn around one of the cells/AW	1	3.3b	ALLOW swap the meters over or AW
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{2 0 0} \Omega$ award 4 marksUnit conversion 20(mA) $=0.02(\mathrm{~A}) / 20 \times 10^{-3}(\mathrm{~A})$ $R=4.0 \div 0.02$ $R=200$ $\Omega \checkmark$	4	1.2 2.1 2.1 1.2	If final unit is $\mathrm{k} \Omega$ or V / mA, this unit conversion is not needed so mp 1 is subsumed into mp 2 ECF incorrect or absent conversion of mA to A e.g. a bald answer of 0.2 gains $\mathrm{mp} 2 \& \mathrm{mp} 3$ unless the unit is $\mathrm{k} \Omega$ or V / mA, when all 4 marks are awarded. Mark unit independently ALLOW ohm(s) or V/A or V/mA if consistent with working
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 75 (C) award 3 marks Charge flow = current \times time $/ Q=I t \checkmark$ $\begin{aligned} & Q=2.5 \times 30 \checkmark \\ & Q=75(\mathrm{C}) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	Mp1 can be assumed if correct substitution follows No ECF from incorrect equation

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
18	(a)	Any three from: Measure original length (using the ruler) Add the 2 N weight \checkmark Measure the extended length and use Extension $=$ extended length - original length \checkmark Use $k=F \div x$ to determine $k v$	3	1.2×3	ALLOW measure the extension/how far it stretched
	(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{4 0 0} \mathbf{(P a) ~ a w a r d ~} 2$ marks $\begin{aligned} & P=2 \div 0.005 \\ & P=400(\mathrm{~Pa}) \end{aligned}$	2	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	
	(c)	Two (or more) forces (are needed) Acting in different directions	2	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	Multiple forces are implied by the use of certain verbs e.g. squash, twist, squeeze ALLOW the marking points shown on a diagram Idea of second force can be implied by fixing one end/part of the material ALLOW clear use of tension or compression for both marks
	(d)	Plastic - stays deformed (when force is removed) Elastic - returns to original shape (when force removed)	2	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	ALLOW permanently changed

Question			Answer	Marks	AO element	Guidance
19	(a)	(i)	Bar C drawn to the correct height of 12s \checkmark	1	1.2	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 12 (s) award 2 marks $14+10+12=36 /(14+10+12) / 3$ without the $36 \checkmark$ $36 \div 3=12$ (s)	2	$\begin{gathered} 3.1 \mathrm{a} \\ 1.2 \end{gathered}$	ECF from (a)(i) ECF from mp1 above
		(iii)	Lift B \checkmark Takes the least time (power is work done \div time taken)/AW \checkmark	2	$\begin{gathered} \hline 3.1 \mathrm{~b} \\ 1.2 \end{gathered}$	If A chosen and correct explanation (for B) given, award mp 2 but not mp 1
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $4166.7(\mathrm{~W})$ award 4 marks $\begin{aligned} & P=E \div t / \text { power }=\text { work done } \div \text { time taken } \\ & P=50000 \div 12 \checkmark \\ & P=4166.666667(\mathrm{~W}) \checkmark \\ & P=4166.7(\mathrm{~W})(1 \mathrm{dp}) \checkmark \end{aligned}$	4	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \\ & 1.2 \end{aligned}$	ALLOW energy (transferred) \div time taken ALLOW 4166.7 for 2 marks if more dp not given ECF own calculated power to 1 dp
		(ii)	$\begin{aligned} & \text { FIRST CHECK THE ANSWER ON ANSWER LINE } \\ & \text { If answer }=3000 \text { (J) award } 3 \text { marks } \\ & \text { Work done }=\text { force } \times \text { distance } \checkmark \\ & W=750 \times 4 \checkmark \\ & W=3000 \\ & \hline \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
20	(a)	One straight line between the middle of the two poles \checkmark At least 2 correctly curved lines between the edges of the poles, one above and one below \checkmark Arrows on field lines going N to $S \checkmark$	3	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.2 \end{aligned}$	Ignore any field lines not between the labelled poles Allow dotted lines. Straight line by eye (rulers not used) Concave smooth curves Any wrong arrow loses this mark
	(b)	Any one from: Induced magnets lose their magnetism (when away from a magnetic field)/AW ORA \checkmark Permanent magnets retain their magnetism (when away from a magnetic field)/AW \checkmark	1	1.1	
	(c)	Mistakes: When avoltage flows through them a magnetic field is created. The magnetic field can be increased by decreasing the number of turns......	2	$\begin{aligned} & 3.1 \mathrm{~b} \\ & 3.1 \mathrm{~b} \end{aligned}$	Must circle 'voltage, or 'flows through', or whole sentence Should circle 'decreasing (the number of turns)' but NOT the increasing current bit. If a candidate circles 'magnetic field can be increased' and then circles all or part of the increasing current bit, award 1 mark only for this sentence.

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
21	(a)	*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) States that there is no clear trend. AND Detailed identification of at least two problems with the experiment with suggestions of detailed improvements. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Recognises that the average speeds are similar. AND Identifies at least one problem with the experiment with a suggested improvement. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Refers to data from the table. AND Suggests an improvement to the experiment or identifies one problem with the experiment. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{aligned} & 2 \times 3.1 \mathrm{a} \\ & 2 \times 3.2 \mathrm{a} \\ & 2 \times 3.3 \mathrm{~b} \end{aligned}$	AO3.1a Analyse information and ideas to describe trend in results For example: - No obvious/discernible trend - As loads increased time \approx the same - As loads increased speeds \approx the same - 20 N and 60 N mean speeds the same - 20 N and 60 N times the same - 40 N and 80 N mean speeds the same - 40 N and 80 N times the same AO3.2a Analyse information and ideas to make judgements and identify problems with the experiment For example: - Only 4 loads tested - Ramp distance too short - No repeated readings - Mass/weight of trolley ignored - Reaction times an issue for short times AO3.3b Analyse information and ideas to improve experimental procedures For example: - Test more loads - Include mass/weight of the trolley - Use a longer ramp - Have a smaller angle of ramp - Start higher up the ramp - Electronic timing method - Repeat readings and take a mean

Question	Answer	Marks	AO element	Guidance
(b)	EITHER $\begin{aligned} & v^{2}-u^{2}=2 a s \text { (no mark }- \text { on formula sheet) } \\ & u=0 \checkmark \\ & a=v^{2} \div 2 s \checkmark \\ & a=2^{2} \div(2 \times 2.0) \checkmark \\ & a=1.0 / 1\left(\mathrm{~m} / \mathrm{s}^{2}\right) \checkmark \end{aligned}$ OR $\begin{aligned} & \text { mean } v=1 / 2(0+2 \mathrm{~m} / \mathrm{s})=1 \mathrm{~m} / \mathrm{s} \\ & t=s / \text { mean } v=2 \mathrm{~m} / 1 \mathrm{~m} / \mathrm{s}=2 \mathrm{~s} \\ & \begin{aligned} a & =\Delta v / t \checkmark \\ & =(2 \mathrm{~m} / \mathrm{s}-0) / 2 \mathrm{~s}=1\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned} \end{aligned}$	4	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 2.1 \\ & 2.1 \end{aligned}$	If no working shown and answer $=1\left(\mathrm{~m} / \mathrm{s}^{2}\right)$, award all 4 marks. If wrong physics used, then award marks as appropriate for either approach.

Question			Answer	Marks	AO element	Guidance
22	(a)	(i)	40 (g) \checkmark	1	3.2b	
		(ii)	$\text { Mass before }=\text { mass after } / \text { Mass is conserved AW } \checkmark$ Explanation in terms of particle rearrangement / conservation of numbers of particles \checkmark	2	1.1×2	ALLOW no mass is lost ALLOW matter for mass ALLOW atoms/molecules for particles
	(b)		Any one from: Original properties return if change is reversed for physical changes Chemical change can't be reversed (easily) OR physical change easily reversible \checkmark The substance after the change is the same as the substance before the change for physical changes ORA \checkmark	1	1.1	ALLOW in a chemical change particles join together in a different way
	(c)	(i)	Any three from: Measure start/initial temperatures Turn on the heaters / heat water Measurements to determine energy or mass of water \checkmark For a set time \checkmark Measure the final/end temperatures	3	2.2×3	IGNORE put thermometer or heater in beaker Initial can be implied ALLOW for a fixed temperature change ALLOW for a fixed temperature change, measure time
		(ii)	Any one from: Beakers are different sizes OR different volumes /mass of liquid in A and B Beakers are not insulated / no lids \checkmark	1	3.3a	ALLOW Heater is not fully in the water

Question		Answer	Marks	AO element	Guidance
(iii)	Any two from: Use beakers of the same size / same volume \checkmark Use same mass or volume of liquid \checkmark Stir water / keep distance from thermometer to heater fixed \checkmark Insulate the beakers or put the beakers on an insulating material \checkmark Put a lid on the beakers \checkmark Make sure the heater is fully inserted into the liquid \checkmark	$\mathbf{2}$	3.3b		

Question		Answer	Marks	$\begin{array}{\|c\|} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
23	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.28$ (A) award 4 marks $\begin{aligned} & \text { Rearrange equation current }=\text { power } \div \text { potential difference/ } \\ & I=P \div V \checkmark \\ & I=65 \div 230 \checkmark \\ & I=0.2826086 \checkmark \\ & I=0.28 \text { (A) } \checkmark \end{aligned}$	4	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \\ & 1.2 \end{aligned}$	NOTE If answer not to 2 sig figs max 3 marks ALLOW one mark for any calculated answer to 2sf
	(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 117000 (or 116000) (J) award 4 marks $E=P \times t \checkmark$ Unit conversion 30 minutes $=1800$ seconds \checkmark $E=65 \times 1800$ $E=117000(\mathrm{~J})$	4	1.2 1.2 2.1 2.1	ALLOW ECF from (a) $E=Q \times V \text { or IxtxV }$ $E=0.28 \times 1800 \times 230$ ALLOW ECF for incorrect time conversion ALLOW three marks for 1950 (J) $E=116000(J) \checkmark$

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

