

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCSE In Chemistry (1CH0) Paper 2F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

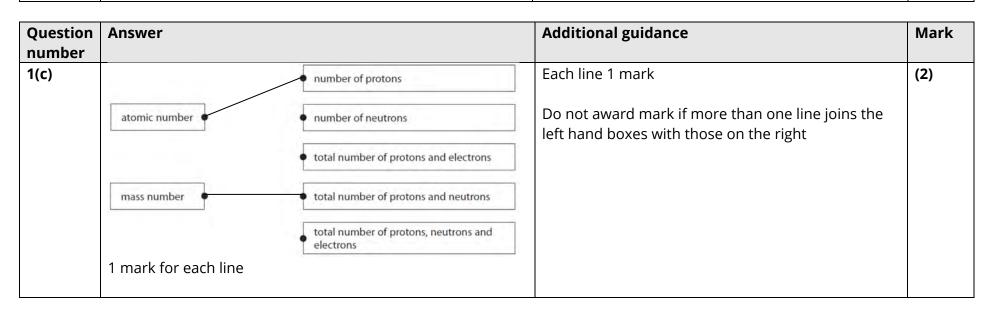
Summer 2019 Publications Code 1CH0_2F_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.


When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word		
Strand	Element	Describe	Explain	
AO1		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)	
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description		
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning	
AO3	За	An answer that combines the marking points to provide a logical description of the plan/method/experiment		
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning	

Question number	Answer	Mark
1(a)	C photosynthesis is the only correct answer	1
	A and B are processes that required oxygen D is a process that does not involve oxygen	

Question number	Answer	Additional guidance	Mark
number 1(b)(i)	Vertical bar for oxygen to just over 20% as shown in the bar chart (ignore width):	ignore bars touching each other ignore 21 above bar	(1)
	20 10 0 nitrogen oxygen other gases (1)		

Question number	Answer	Additional guidance	Mark
1(b)(ii)	MP1 : <u>21</u> (1) (=0.21) 100 MP2 : 0.21 x 300 (1)	63 (cm ³) with no working scores 2 marks 300/4.76 = 63 (2) 300/4.8 = 62.5 (2) allow 21 x 300 (1) (= 6300)	(2)
	(= 63) (cm ³)	allow <u>300</u> (1) (= 3) 100	

Question number	Answer		Mark
1(d)	 B a glowing splint will relight when placed in the gas A describes the test for carbon dioxide C describes the test for hydrogen D describes the test for an alkaline gas such as ammonia 	is the only correct answer	(1)

Question number	Answer	Additional guidance	Mark
2(a)(i)	halogens	reject halide	(1)
	or		
	halogen		

Question number	Answer	Additional guidance	Mark
2(a)(ii)	noble gases	De net allow gages alone	(1)
	or	Do not allow gases alone	
	inert gases		
	or		
	rare gases		

Question number	Answer	Mark
2(b)	 C yellow-green red-brown is the only correct answer A gives the colours for iodine vapour and chlorine gas B gives the colours for solid iodine and iodine vapour D gives the colours for bromine liquid and iodine vapour 	(1)

Question number	Answer	Mark
2(c)	D liquid solid is the only correct answer	(1)
	A , B and C are incorrect because bromine is a liquid and iodine is a solid at 50 °C	

Question number	Answer	Additional guidance	Mark
2(d)	accept any number in the range 1.4 – 3.5	Allow any number of decimal places	(1)
	accept value either on answer or in the space in the table	Do not allow number below 1.4	
		Do not allow negative numbers	
		Do not allow numbers greater than 3.5	

Question number	Answer	Additional guidance	Mark
2(e)	 An explanation linking the points in one of the pairs EITHER argon is {inert / a noble gas} OR argon has /atoms have) {full / 8 electrons in} outer shell (1) so (it) does not react (with metal filament) OR (argon/atoms) do not {gain / lose / share electrons} 	so metal does not burn/ combust (in argon) so (argon) does not {burn / combust} with metal	(2)
	 OR oxygen is reactive (1) (air/oxygen) reacts with metal filament / forms metal oxide (1) 	(filament) so (argon) {is unreactive / less reactive / not very reactive / inactive } (with metal filament) ignore air for MP1 here allow metal burns	

Total for Question 2 = 7 marks

Question number	Answer	Additional guidance	Mark
3(a)	$ \begin{array}{c} \left[\begin{array}{c} H & H \\ - C & - C \\ H & H \end{array} \right]_{n} (1) \\ H \\ C = C \\ H & H (1) \end{array} $	note n must be present on the repeating unit	(3)
	poly(tetrafluoroethene) (1)	allow polytetrafluoroethene ignore ptfe / Teflon	

Question number	Answer	Additional guidance	Mark
3(b)	 any two from polymers degrade very slowly / last very long time in landfill (1) not biodegradable (1) landfill sites fill up quickly (1) (toxic) gases produced during disposal by combustion (1) harmful to wildlife / habitats / ecosystems(1) 	allow decompose/ breakdown / disintegrates allow named gases allow carbon dioxide	(2)

Question number	Answer	Mark
3(c)	$\mathbf{B} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1)
	A is not correct because there are insufficient CH₃ groups attached to the carbon chain C is not correct because only one CH₃ group can be attached to a carbon atom D is not correct because there are no H atoms attached to the carbon chain	

Question number	Answer	Additional guidance	Mark
3(d)	MP1 : calculation 24 600 × 42 (1) (=1 033 200)	without working: 1 030 000 – 2 marks 1 033 200 – 1 mark	(2)
	MP2 : answer to 3 sig figs = 1 030 000 / 1.03 x 10 ⁶ (1) (to 3 sig figs)	allow 24600/42 = 586 (1)	

Total for Question 3 = 8 marks

Question number	Answer	Additional guidance	Mark
4(a)	(top pan) balance (1)	allow (weighing) scale(s)	(1)

Question number	Answer	Additional guidance	Mark
4(b)	An explanation linking		(2)
	• temperature rises / increases (by 11 °C) (1)	allow gets hotter / water heats up {temperature / it} goes up	
		Ignore heat increasing for MP1	
	exothermic process (1)	allow heat / energy {given out / released to surroundings}	
		reject endothermic for MP2	

Question number	Answer	Mark
4(c)(i)	 c is the only correct answer A is the hazard symbol for corrosive substances B is the hazard symbol for substances that are harmful to the environment D is the hazard symbol for flammable substances 	(1)

Question number	Answer	Additional guidance	Mark
4(c)(ii)	wear {goggles / safety glasses} / wear gloves	allow eye protection ignore tie long hair back ignore safety clothing / ppe	(1)
Question number	Answer	Additional guidance	Mark
4(d)	put a lid on / put cover on top / lag beaker / use insulation / use polystyrene cup (1)	allow any material around the beaker that prevents heat loss eg cotton wool /(aluminium) foil	(1)

Question number	Answer	Additional guidance	Mark
4(e)	MP1: using volume = $\underline{\text{mass}}$ (1) concentration MP2: volume = $\underline{9.0}$ (dm ³) (1) 12 (= 0.75 dm ³) MP3: converting volume to cm ³ = 0.75 x 1000 (1) (= 750 (cm ³))	without working 750 cm ³ (3) 0.75 (dm ³) (2) <u>12</u> (0) x 1000 (1) = 1333 cm ³ 9	(3)

Total for Question 4 = 9 marks

Question number	Answer	Mark
5(a)(i)	x = 6 (1)	(2)
	y = 14 (1)	

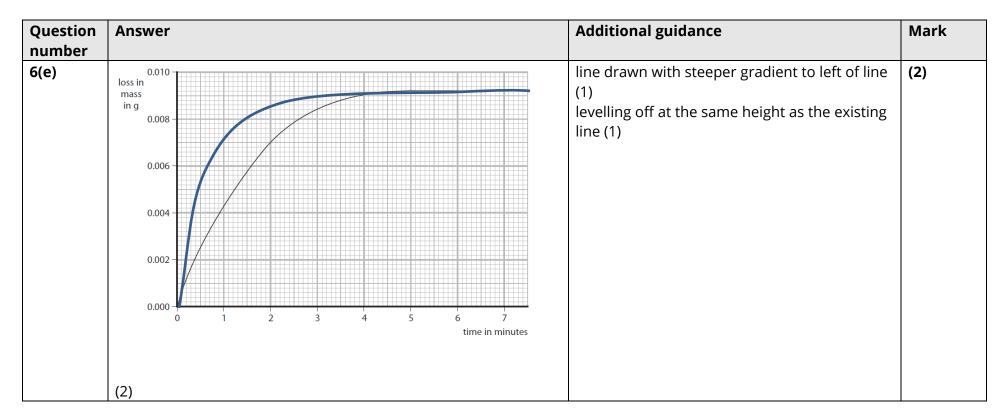
-	uestion umber	Answer	Mark
	a)(ii)	25 (g)	(1)

Question number	Answer	Additional guidance	Mark
5(b)(i)	4 electrons shown between the 2 carbon atoms	electrons may be shown as dots, crosses or as a mixture	(1)

•	Answer	Additional guidance	Mark
number			
5(b)(ii)	carbon monoxide / carbon / soot	allow CO / C ignore carbon dioxide	(1)

Question	Answer	Additional guidance	Mark
number			
5(c)	An explanation linking		(2)
	 (molecules of X) contain double bonds / C=C (1) only contain carbon and hydrogen atoms (1) 	allow multiple bond	

Question number	Answer	Additional guidance	Mark
5(d)	 An explanation linking any two of the following A reacts with bromine (water) (1) (therefore) A is unsaturated (1) OR 	allow A is alkene / B is alkane (1) allow alkane does not decolourise / alkene does decolourise (1)	(2)
	 B does not react with bromine (water) (1) (therefore) B is saturated (1) 	allow A is unsaturated and B is saturated (2) allow A reacts and B does not react (2) ignore bromine water turns clear / is discoloured	


Total for Question 5 = 9 marks

Question number	Answer	Additional guidance	Mark
6(a)	Any suitable container for measuring volume of 100 cm ³ eg measuring cylinder	allow burette / pipette ignore beaker, conical flask, measuring jug	(1)

Question number	Answer	Additional guidance	Mark
6(b)	 An explanation linking {hydrogen / gas} formed / OWTTE (1) escapes (from the flask) (1) 	allow released (from the flask) ignore references to magnesium reacting	(2)

Question number	Answer	Additional guidance	Mark
6(c)	An explanation linking	for full marks, reference needs to be made to particles in answer	(3)
	• MP1 : fewer reacting particles left / some particles reacted (1)	allow more particles at the start (than at the end) allow less magnesium / less reactants (1)	
	MP2: fewer collisions (1)	allow 'less' ignore particle speed	
	• MP3: (fewer) frequent (collisions) (1)	allow (fewer collisions) per {second / unit time} (less/fewer) frequent collisions scores MP2 and MP3	

Question number	Answer	Additional guidance	Mark
6(d)	(mass loss will be) greater (1)	Allow more gas	(1)
		Ignore references to reaction rate	

Question number	Answer	Additional guidance	Mark
6(f)(i)	makes it faster / increases rate / lowers activation energy	 accept speeds it up / increases collision rate allow shorter reaction time / alternative reaction pathway / it could be carried out at a lower temperature ignore other aspects of catalysis eg is not used up ignore 'slows down the activation energy' ignore speeds up reaction time 	(1)

Question number	Answer	Additional guidance	Mark
6(f)(ii)	Any three experimental points to include		(3)
	MP1 : use known mass of catalyst in a reaction / find mass of catalyst before reaction (1)		
	MP2 : after reaction {remove / filter}, wash & dry (1)		
	MP3 : find mass of catalyst afterwards / mass of catalyst unchanged (1)	calculate difference in final and initial masses	

Total for Question 6 = 13 marks

Question number	Answer	Mark
7(a)(i)	 An explanation linking one of the following pairs the test only detects that ion (1) 	(2)
	 so no confusion with other ions (1) OR if same result is given by more than one ion (1) do not know which ion is present (1) 	

Question number	Answer	Additional guidance	Mark
7(a)(ii)	carbon dioxide	allow CO ₂ ignore CO ² / CO2 / Co ₂	(1)

Question number	Answer	Additional guidance	Mark
7(a)(iii)	test for chloride ion: add dilute nitric acid followed by silver nitrate solution test for iodide ion: add dilute nitric acid followed by silver nitrate solution test for sulfate ion: add dilute hydrochloric acid followed by barium chloride solution (3)	 chloride ion – white precipitate (1) iodide ion – yellow precipitate (1) sulfate ion – white precipitate (1) 1 mark for each line If more one line connects a left hand box to those on the right, do not award that mark 	(3)

Question number	Indicative content	Mark
-	 Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (3 marks) AO3 (3 marks) sodium, potassium and calcium ions detected by flame test clean flame test wire with hydrochloric acid dip wire into solid hold wire in flame if flame is yellow - sodium if flame is orange-red - calcium if flame colour - could be aluminium calcium and aluminium ions detected using sodium hydroxide solution dissolve white solid in water add drops of sodium hydroxide solution white ppt shows calcium or aluminium ions no ppt shows sodium or potassium ions 	Mark (6)
	 add more drops sodium hydroxide solution if white ppt dissolves to form colourless solution is aluminium ions if white ppt does not dissolve is calcium ions 	

Level	Mark	Descriptor
	0	No awardable content
Level 1	1–2	 Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	 Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3) Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	 Interpretation and evaluation of the information, demonstrating throughout the skills of synthesising relevant understanding. (AO3) Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Level	Mark	Additional Guidance	General additional guidance – the decision within levels Eg - At each level, as well as content, the scientific coherency of what is stated backed up by planning detail will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1–2	Additional guidance State test OR State the result of a test OR knows that sodium hydroxide solution can be used to test for some metal Gives correct flame colour for more than one metal One test stated and one correct result One test poorly described	 <u>Possible candidate responses</u> use a flame test OR sodium gives a yellow flame OR carry out precipitate test OR use sodium hydroxide sodium gives a yellow flame and potassium gives a lilac flame use a flame test, and sodium gives a yellow flame use sodium hydroxide for a ppt test OR sodium above blue flame
Level 2	3–4	Additional guidanceOne test poorly described and one correct result for either test OR One test well describedStates both tests, including sodium hydroxide OR One test well described and at least one correct resultBoth tests poorly described OR One test poorly described, two correct results from either test	 Possible candidate responses sodium (compound) above blue flame gives yellow flame OR add sodium hydroxide and aluminium gives white ppt sodium (compound) on wire/splint and in blue flame OR dissolve solid in water and add sodium hydroxide do flame test; use sodium hydroxide for a ppt test OR dissolve solid in water and add sodium hydroxide and aluminium gives white ppt OR sodium (compound) on wire/splint and in blue flame gives yellow flame sodium (compound) above the blue flame; use sodium hydroxide for a ppt test OR sodium (compound) above the blue flame gives a yellow flame, carry out precipitate test, white ppt formed
Level 3	5–6	Additional guidance Both tests poorly described, a correct result for both tests Both tests well described One test well described, one test poorly described, and a correct result for either test Both tests well described, and a correct result for both tests	 <u>Possible candidate responses</u> sodium (compound) on wire/splint gives yellow flame AND Add sodium hydroxide and aluminium gives white ppt dissolve solid in water and add sodium hydroxide AND Sodium (compound) on wire/splint and in blue flame. sodium(compound) on wire/splint and in blue flame gives yellow flame AND add sodium hydroxide to metal. Dissolve solid in water and add sodium hydroxide and sodium on wire/splint and in blue flame gives yellow flame AND add sodium hydroxide to metal.

Question number	Answer	Mark
8(a)	B Crude oil is a mixture of hydrocarbons is the only correct answer	(1)
	Answer A , C and D are factually incorrect	

Question number	Answer	Additional guidance	Mark
8(b)(i)	kerosene: (fuel for) aircraft / jets / lamps / cooking / heaters / fire lighters / rocket fuel (1) diesel oil: (fuel for) cars / trains / trucks / lorries / vehicles / tractors / generators / boats (1)	Ignore generic uses such as factories / machines / engines / fuel reject trains, boats allow ships	(2)

Question number	Answer	Additional guidance	Mark
8(b)(ii)	any one of	Note : unless otherwise stated, comparison is kerosene with diesel oil	(1)
	 boiling point: low(er) melting point: low(er) ignition: easy / easier viscosity: low(er) / {runny / runnier} / thin(ner) flammability: high(er) volatility: high(er) density: low(er) 	ignore lower number of carbons and hydrogens: lower length of chain: lower /shorter molecule / colour sootiness: diesel has sootier flame accept reverse argument for diesel oil note: property may be implicit in comparison	

Question number	Answer	Additional guidance	Mark
8(c)(i)	 An explanation linking they differ by CH₂ / differ by one carbon atom / pentane has one more carbon (1) 	ignore: similar chemical properties, quoting the two molecular formulae, they are both saturated, both have single bonds (only) reject carbon or hydrogen molecules for MP1	(2)
	 they have the same general formula / C_nH_{2n+2} / both alkanes (1) 	ignore same pattern of formula / similar general formula reject same {chemical / molecular} formula	

Question number	Answer	Additional guidance	Mark
8(c)(ii)	82.8 with or without working scores 3 correct answer but incorrectly rounded or not to 3sf	allow ecf but calculation must use 12, 58, 100	(3)
	scores 2	if working rounded to 1dp and carried forward, allow full marks	
	4 x 12 (1) (= 48) OR	eg 1.72 x 48 = 82.56 (2) or 82.6 (3)	
	<u>100</u> (= 1.724) (1)	allow	
	58	<u>100</u> (1) (= 1.72414) 58	
	<u>48 x 100 (1) (= 82.759)</u>	= 1.72 (1) (to 3 sf)	
	58	OR	
		<u>100</u> (1) x 12 (= 20.68966)	
	= 82.8 (g) (1)	58	
		= 20.7 (1) (to 3 sf)	
		OR	
		4 x 12 (1) x 100 (= 4800)	
		$= 4.80 \times 10^{3}$ (1) (to 3 sf)	

Question number	Answer	Additional guidance	Mark
8(c)(iii)	butane + oxygen	allow $C_4H_{10} + 6.5 O_2 \rightarrow 4CO_2 + 5H_2O$ (2)	(2)
	\rightarrow carbon dioxide + water (2)	allow multiples	
		correct formulae no balancing (1)	
	butane + oxygen \rightarrow (1)		
	\rightarrow carbon dioxide + water (1)	allow hydrogen oxide for water	
		allow reactants and products in either order	
		ignore state symbols	
		allow = for \rightarrow	

Total for Question 8 = 11 marks

Question number	Answer	Mark
9(a)	 B 13 14 10 is the only correct answer A is incorrect because it is the numbers of subatomic particles in the atom not the ion C is incorrect because it would be an isotope of silicon with a +4 charge to it D is incorrect because it would be another isotope of silicon but with a 3- charge to it. 	(1)

Question number	Answer	Additional guidance	Mark
9(b)	2.25/ 2.3 with or without working scores 3	allow ecf for incorrect formula mass	(3)
	MgO = 24 + 16 = 40 (1)	allow 48 g Mg forms 80 g MgO (1) (could be under the equation)	
	THEN	THEN	
	1 g Mg forms <u>40</u> (1) = 1.67 (g) MgO 24	1 g Mg forms <u>80</u> (1) = 1.67 g MgO 48	
	1.35 g Mg forms <u>40 x 1.35</u> (1) MgO 24	1.35 g Mg forms <u>80 x 1.35</u> (1) MgO 48	
	= 2.25 (g)	= 2.25 (g)	
	OR	OR	
	Mg <u>1.35</u> (1) = 0.05625 24	Mg $\frac{1.35}{48}$ (1) = 0.028125	
	MgO 0.05625 x 40 (1) = 2.25 (g)	MgO 0.028125 x 80 (1) = 2.25 (g)	
		Note 40 x 1.35 = 54 (2) or 80 x 1.35 = 108 (2)	

Question number	Answer	Additional guidance	Mark
9(c)	$Cl_2 + H_2 \rightarrow 2HCl (3)$	do not penalise incorrect small/ capital letters	(3)
	$Cl_2 + H_2 \rightarrow (1)$	for left hand side formulae, do not allow Cl ² or Cl2, but allow MP3 if correctly balanced allow reactants in either order	
	\rightarrow HCl (1) balancing of correct formulae (1)	allow CIH for HCI	
		allow = for → allow multiples	
		ignore state symbols	
		if molecules have a + or – charge do not allow mark for formulae but allow MP3 for correct balancing	

Question number	Indicative content	Mark
*9(d)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant.	(6)
	AO1 (3 marks) AO3 (3 marks)	
	 sodium atoms lose electrons each sodium atom loses one electron to obtain electronic configuration 2.8 which is that of sodium ions, Na⁺ electrons transfer to chlorine atoms chlorine atoms gain electrons each chlorine atom gains one electron to obtain electronic configuration 2.8.8 which is that of chloride ions, Cl⁻ sodium ions attract chloride ions because of opposite charges ions pack close together ratio of ions 1:1 ions arranged in lattice giant (ionic) (structure) 	

Level	Mark	Descriptor
	0	No awardable content
Level 1	1-2	 Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	 Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3) Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	 Interpretation and evaluation of the information, demonstrating throughout the skills of synthesising relevant understanding. (AO3) Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Level	Mark	Additional Guidance	General additional guidance – the decision within levels Eg - At each level, as well as content, the scientific coherency of what is stated backed up by use of the information will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1–2	Additional guidance Describes how ions are formed by loss or gain of electrons OR identifies structure type of sodium chloride	 <u>Possible candidate responses</u> atoms {lose / gain} electrons sodium chloride has a giant structure loose description of a solid ionic structure
Level 2	3-4	Additional guidanceDescribes formation of sodium ions by loss of electrons or describes formation of chloride ions by gain of electronsORDescribes formation of one ion using electron configurationsORDescribes structure type of sodium chloride ORBasic description of ion formation and identifies sodium chloride structure	 <u>Possible candidate responses</u> sodium loses electrons and chlorine gains electrons to form ions sodium loses {electrons / 1 electron} to form sodium ions [incorrect number of electrons lost puts this at the bottom of the level] chlorine gains {electrons / 1 electron} to form chloride ions [incorrect number of electrons gained or 'chlorine ions' puts this at the bottom of the level] electron shell diagram showing atoms forming ions for either sodium or for chlorine
Level 3	5-6	Additional guidanceDescribes formation of sodium and chloride ions byloss or gain of electronsANDdescribes formation of ions using electronconfigurations.orDescribes structure of sodium chloride	 Possible candidate responses {sodium / Na} atoms lose 1 electron to form {sodium ions / Na⁺ (ions)} and {chlorine / Cl} atoms gain 1 electron to form {chloride ions / Cl⁻ (ions)} AND Na : 2.8.1 becomes Na⁺ : 2.8 and Cl : 2.8.7 becomes Cl⁻ : 2.8.8 OR as electron shell diagrams showing electron transfer or sodium and chloride ions have opposite charges and attract each other (to make a giant structure) (could be shown in a diagram)

Question number	Answer	Additional guidance	Mark
10 (a)	An explanation linking		(2)
	• yeast provides enzymes (1)	allow yeast provides a biological catalyst allow yeast provides zymase	
		allow yeast {contains/is} an enzyme	
	 (at 80°C) the enzymes {not effective / denatured} (1) 	allow yeast is denatured ignore enzyme is killed	
		allow yeast grows well at 30°C but yeast cells are killed at 80°C .	

Question number	Answer	Mark
10 (b)(i)	B oxidised is the only correct answer	(1)
	A, C and D are factually incorrect	

Question number	Answer	Additional guidance	Mark
10 (b)(ii)	H - C - C H -	allow correct dot and cross diagram ignore incorrect bond angles allow OH for O-H	(2)
	correct methyl group (1)	reject methyl group with additional carbons max 1 mark if double bond present 2 carbons	

Question number	Answer	Additional guidance	Mark
10 (c)(i)	A description to include	ignore references to timing	(3)
	• heat water to increase temperature by 30°C (1)	allow watch thermometer until the temperature increases 30°C / wait for temperature to rise 30°C	
	AND any two from		
	• extinguish flame (1)	allow put a cap on the burner (to extinguish flame)	
	• (re-)determine mass of burner containing ethanol (1)		
	 subtract final from initial mass / calculate the change in mass (1) 	allow '(re-)weigh the burner'	

Question number	Answer	Additional guidance	Mark
10 (c)(ii)	vertical axis with linear scale that uses more than half of the edge of the grid (1) all points correctly plotted to +/- ½ small square (1)	allow axis not starting at 0	(3)
	single line of best fit drawn (1)	allow points joined by straight lines / dot to dot ignore the line after points reject tramlines correct bar chart can gain MP1 and MP2	

Total for Question 10 = 11 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom