Oxford Cambridge and RSA

GCSE (9-1)

Physics B (Twenty First Century Science)
 J259/02: Depth in physics (Foundation Tier)

General Certificate of Secondary Education

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations available in RM Assessor

Annotation	Meaning
A	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
l	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

3. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a Analyse information and ideas to interpret. AO3.1b AO3.2 Analyse information and ideas to evaluate. AO3.2a Analyse information and ideas to make judgements. AO3.2b Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

Question		Answer	Marks	AO element	Guidance	
1	(a)		$\mathrm{B} \checkmark$	1	1.1	
	(b)	(i)	$\mathrm{X} \checkmark$	1	1.1	
		(ii)	$\mathrm{W} \checkmark$	1	1.1	

Question		Answer	MarksAO element	Guidance	
$\mathbf{2}$	(a)	The wax is melting - B \checkmark The wax is a liquid - C \checkmark The particles of the wax are closest together - A \checkmark	$\mathbf{3}$	$\mathbf{2 . 1}$	
(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=6000(\mathrm{~J})$ award 2 marks $=0.25 \times 24000 \checkmark$ $=6000(J) \checkmark$	$\mathbf{2}$	$\mathbf{2 . 1}$		

Question		Answer	Marks	AO element	Guidance
3	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=4(\mathrm{~m} / \mathrm{s})$ award 3 marks	$\mathbf{3}$		
Recall Speed = distance \div time \checkmark $=500 \div 125 \checkmark$ $=4(\mathrm{~m} / \mathrm{s}) \checkmark$	1.2				
(b)	It has size but not direction \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$		

Question		Answer	Marks	AO element	Guidance	
$\mathbf{4}$	(a)	(i)	Variable resistor \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$	
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=4.8(\Omega)$ award 3 marks Recall p.d. $=$ current \times resistance \checkmark Resistance $=3.6 \div 0.75 \checkmark$ $=4.8(\Omega) \checkmark$	$\mathbf{3}$		$\mathbf{1 . 2}$	
	(b)	(i)	voltmeter \checkmark ammeter \checkmark	$\mathbf{2}$	$\mathbf{1 . 2}$	either order
	(ii)	As brightness increases resistance decreases \checkmark At a decreasing rate/non-linear/AW \checkmark	$\mathbf{2}$	$\mathbf{3 . 1 a}$		

Question			Answer	Marks	AO element	Guidance
5	*		Please refer to the marking instructions on page 5of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Describes in detail how to calculate pressure they exert on the floor AND Explains using ideas about forces why their hypothesis is wrong There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Describes how to calculate pressure they exert on the floor with some detail AND Explains using ideas about forces why their hypothesis is wrong OR Describes in detail how to calculate pressure they exert on the floor AND Gives a basic explanation of why their hypothesis is wrong There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Describes some basic steps of how to calculate pressure OR Gives a basic explanation of why the hypothesis is wrong There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{aligned} & 2 \times 1.1 \\ & 2 \times 2.1 \\ & 2 \times 3.2 \mathrm{a} \end{aligned}$	A01.1 Demonstrate knowledge of pressure = force/area - Recalling of pressure = force/area - Recalling that weight is a force - Recalling of weight = mass / gravitational field strength - Demonstrating that area should be measured in metres squared AO2.1 Applies knowledge of $P=F / A$ to calculating force and area from Ben and Alex's investigation - Counting squares method - Combining partial squares together - Converting area of 1 square into metres squared - Calculating pressure by dividing weight by double the area of one foot AO3.2a Analysing information to make judgement about why their hypothesis is wrong - Even though they have the same shoe size, Alex exerts a lesser force on floor as greater surface area means less pressure exerted on the floor - Force is spread out over greater area ORA

Question			Answer	Marks	AO element	Guidance
6	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 9.3 (cm^{3}) award 2 marks $\text { Volume }=2.1 \times 2.1 \times 2.1=9.261 \checkmark$ $\text { Volume }=9.3\left(\mathrm{~cm}^{3}\right)$	2	$\begin{aligned} & 2.1 \\ & 1.2 \end{aligned}$	ALLOW one mark for incorrect answer to correct number of significant figures
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{8}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ award 2 marks $\begin{aligned} & 74.4 / 9.3 \checkmark \\ & =8 \checkmark \end{aligned}$	2	2.1	ALLOW ECF from 6a(i) ALLOW 8.2667, 8.0346, 8.0337 or correct rounding of these to any sf for 2 marks
	(b)		Use a balance to) measure the mass of a measuring cylinder \checkmark (Use a balance to) measure the mass of the measuring cylinder with water \checkmark The mass of the water $=$ (mass of water + measuring cylinder) - (mass of measuring cylinder) \checkmark Use the measuring cylinder to measure the volume (of water)	4	2.2	ALLOW (Use a balance to) measure the mass of the water and glass (Use a balance to) measure the mass of the glass (without water) The mass of the water = (mass of water + glass) (mass of glass) Use of measuring cylinder to measure the volume (of water) ALLOW some/all the water
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.25\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ award 2 marks $\begin{aligned} & =1.0 \div 4 \text { or } \underline{D_{\text {poly }}} / D_{\text {water }}=\underline{V_{\text {water }}} / V_{\text {poly }}=1 / 4 \checkmark \\ & =0.25\left(\mathrm{~g} / \mathrm{cm}^{3}\right) \checkmark \end{aligned}$	2	2.1	

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
7	(a)	short half-life (of 6 hours, but long enough to get results) OR emits gamma radiation AND any one from: After 24 hours there will only be a small amount (1/8) of the tracer left AW can penetrate the skin so detected outside the body least ionising so least damaging to cells	2	$3.2 \mathrm{a}$ 2.1	ALLOW 'only 6 hours' ALLOW idea 'so it doesn't linger in the body'
	(b)	(Precaution): prepare the tracer: several metres away OR behind a (lead) screen AND (Explanation): Reduces risk (due to irradiation) OR reduces exposure	1	2.1	IGNORE any reference to lead apron
	(c)	Cobalt-60 AND any one from: Idea of no appreciable loss in activity when in use \checkmark It will not need to be replaced often as it has a long halflife Gamma radiation so will penetrate the body and reach the tumour	2	$\begin{gathered} 3.2 \mathrm{a} \\ 2.1 \end{gathered}$	e.g. It has a long enough half life to be used many times. ALLOW half-life long, but short enough to see results DO NOT ALLOW gamma radiation so will leave the body

Question			Answer	Marks	AO element	Guidance
8	(a)	(i)	Measure distance across several wave fronts divide by number of waves / $11 \mathrm{~cm} / 5$ wave fronts \checkmark Wavelength $=2.2 \mathrm{~cm} \checkmark$	3	1.2	Must indicate several, i.e. $3 \leq$ number of wavefronts ≤ 6 ALLOW a few ALLOW range 11 to 11.25 ALLOW 2 to 2.25 cm
		(ii)	Stopwatch \checkmark Time a wave front (to move a measured distance) \checkmark Divide the distance by the time \checkmark OR Calculate the frequency \checkmark number of waves divided by time \checkmark Multiply wavelength by frequency \checkmark	3	1.2	ALLOW use a frequency generator set to known frequency to drive dipper AND multiply the wavelength by frequency ALLOW use the equation $v=f \times \lambda$
	(b)	(i)	Suitable scale on X-axis \checkmark All points plotted correctly \checkmark Suitable line through candidates plotted points	3	1.2	$\begin{aligned} & 1 \text { small square }=2 \\ & +/-1 \text { square } \end{aligned}$
		(ii)	(yes because) It is not a straight line / It is a curve OR The wavelength does increase with depth (but the increases get smaller as depth increases) Use of data from the graph or table to show the above \checkmark	2	3.2a	e.g. from 20 cm to 40 cm it increases by 0.05 m but from 80 cm to 100 cm it increases by 0.01 m ALLOW answer written on the table or graph

Question			Answer	Marks	AO element	Guidance
9	(a)	(i)	Use (plotting) compass \checkmark mark direction of plotting compass needle \checkmark OR Use iron filings \checkmark Sprinkle on and draw the pattern \checkmark	2	1.2	
		(ii)	Cardboard is not a magnetic material \checkmark An iron core/increase in current/more turns of the coil of wire (to increase the strength of the electromagnet) \checkmark	2	$\begin{gathered} 3.2 \mathrm{a} \\ 2.1 \end{gathered}$	
	(b)	(i)	Magnetic field gets stronger at smaller distance \checkmark Increases the force of attraction between the block and the electromagnet	2	3.2a	ALLOW higher level answers e.g. field lines closer together
		(ii)	Any two from: Clockwise moment increases (due to the increased load) (In equilibrium) clockwise moment = anticlockwise moment moment is greater for loads further from pivot \checkmark increase the anticlockwise moment by increasing distance from pivot \checkmark	2	2.1	

Question			Answer	Marks	AO element	Guidance
10	(a)		Any two (errors) from: Ambient light from the window \checkmark Ruler in the wrong place \checkmark Light meter should be underneath the solar panel \checkmark Heat from lamp \checkmark Systematic error in light meter reading \checkmark AND any two (how to reduce errors) from: Cover the window to prevent ambient light coming in \checkmark Place ruler between the lamp and the solar panel \checkmark Move the light meter to solar panel \checkmark Checking that lamp isn't getting too hot/using halogen lamp \checkmark Adjusting to zero when reading is zero/take multiple readings of light with lamp off, calculate mean, and subtract from readings \checkmark	4	2.2×2 $3.3 b \times 2$	ALLOW movement of light meter to underneath lamp as candidates may not be familiar with light intensity
	(b)	(i)	FIRST CHECK THE ANSWER IN THE TABLE If answer = 1.8 (J) award 2 marks $\begin{array}{\|l} 0.06 \times 30 \checkmark \\ =1.8(\mathrm{~J}) \checkmark \\ \hline \end{array}$	2	2.1	
		(ii)	A calculation of efficiency at one distance A comparison with calculated efficiency at a second distance Conclusion that efficiency does not halve \checkmark	3	2.1×2 $3.2 b$	$\begin{aligned} & \text { Calculations } \\ & 10.0 \mathrm{~cm}-71 \%, 20.0 \mathrm{~cm}-63 \%, 30.0 \mathrm{~cm}-64 \% \\ & 40.0 \mathrm{~cm}-55 \%, 60.0 \mathrm{~cm}-47 \% \end{aligned}$
		(iii)	As distance increases the electrical energy/power OR intensity/energy of Sun/light decreases Examples given from the data \checkmark	2	$3.1 \mathrm{a}$ 2.1	

Question			Answer	Marks	AO element	Guidance
11	(a)	(i)	the rate of transfer of chemical store of energy OR Power $=$ Transfer of chemical store $/$ time	2	1.1	ALLOW (80kJ of the) Chemical Store transferred (in the battery) 1 mark And per second 1 mark ALLOW Power = energy transferred/time 1 mark
		(ii)	How - (energy is dissipated) by heating (in the wires) \checkmark Where - thermal store of the surroundings	2	1.1	ALLOW description e.g. the wires get hot ALLOW Heat/thermal energy (of surroundings)
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=£ \mathbf{£} . \mathbf{7 2}$ award $\mathbf{2}$ marks $\begin{gathered} 42 \times 16=672 p \\ =£ 6.72 \checkmark \end{gathered}$	2	$\begin{aligned} & 2.1 \\ & 1.2 \end{aligned}$	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=6.0$ (hours) award 2 marks Power $/$ energy $=42 / 7 \checkmark$ Time $=6.0$ (hours) \checkmark	2	2.1	
		(iii)	Maximum range $=42 \times 6=252 \mathrm{~km} \checkmark$ Amir's range is less/220 so don't agree with manufacturer \checkmark OR Amir's range per $\mathrm{kWh}=220 / 42=5.2 \mathrm{~km} \checkmark$ Which is less than manufacture's claim so don't agree OR Energy manufacturer claims required $=220 \div 6=36.7$ kWh \checkmark Which is less than the energy stored by a fully charged battery so don't agree with manufacturer \checkmark	2	3.1b	ALLOW ECF from b(ii) for error in calculation answer if calculation is correct

Question		Answer	Marks	AO element	Guidance
(c)		Add weights/mass to the trolley (to represent more passengers) $\sqrt{ }$ Measure the power output from the motor \checkmark	2	3.3a	ALLOW calculation of power needed to pull different weights/masses 2 marks Idea of weight must be in reference to adding mass/weight to the trolley ALLOW P=IV ALLOW Measure GPE for lifting different weights/masses or measure total distance travelled (by the trolley) for different weights/masses 1 mark

Question		Answer	Marks	AO element	Guidance
12*		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Correctly explains the acceleration before during and after take off AND Correctly applies Newton's I and II Laws There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some explanation of acceleration before and during take off AND Attempts to apply Newton's I and II Laws There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) A partial description of acceleration before or during take off AND Basic attempt at applying Newton's I and II Laws There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} 1 \times 1.1 \\ 3 \times 2.1 \\ 2 \times 3.1 \mathrm{a} \end{gathered}$	AO 1.1 Demonstrates knowledge of weight and Newton's first law - Recall of weight $=$ mass \times gravitational field strength - Demonstrate knowledge of forces acting on the rocket e.g. weight acts downwards and up thrust acts upwards - interaction pair of forces AO 2.1 Application of Newton's Laws - Application of Newtons first law - Application of $F=m a /$ Newtons second law - Calculation of weight of rocket weight $=14200000$ N - Description of before take off - Stationary - Weight balanced by reaction force and resultant force $=0$ so no acceleration - Description of during take off - Upward thrust greater than weight Resultant force $=23000000$ - weight) $=8800000$ So accelerates upwards Acceleration = $8800000 / 1420000=6.2 \mathrm{~m} / \mathrm{s}^{2}$ AO 3.1a analyse ideas to interpret how the forces and acceleration change before during and after lift-off - After take off - Fuel is burnt so mass/weight decreases - This will increase the resultant force increasing the acceleration - Gravitational field strength decreases away from the Earth increasing the acceleration - When fuel is used up rocket will stop accelerating

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

