Oxford Cambridge and RSA

GCSE (9-1)

Physics B (Twenty First Century Science)
 J259/03: Breadth in physics (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations available in RM Assessor

Annotation	Meaning
A	Correct response
\boldsymbol{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
$\overline{\text { RE }}$	Contradiction
$\overline{\text { SF }}$	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
l	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

3. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientifici ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

Question			Answer	Marks	AO element	Guidance
2	(a)		negative correlation / as wind output increases, gas output decreases / AW \checkmark wind speed varies \checkmark need to burn more gas when wind speed is low / gas is used to balance the load / gas power stations switched on when it is not windy / AW \checkmark	3	$\begin{gathered} 3.1 \mathrm{a} \\ 3.2 \mathrm{a} \times 2 \end{gathered}$	
	(b)	(i)	Any one from: (burning gas emits) carbon dioxide (burning gas causes) climate change / greenhouse effect / global warming \checkmark drilling for gas may damage ecosystems / habitats / AW	1	1.1	ALLOW greenhouse gases (released)
		(ii)	on some days wind turbines generate very little energy/ even with more wind turbines they will not always supply enough energy AND any one from: will always need gas / fuel power stations as backup \checkmark could use biomass / hydroelectric / nuclear / coal / storage as backup instead of gas another energy resource will be needed \checkmark	2	3.1b	

Question		Answer	Marks	AO element	Guidance
3	(a)	electrons \checkmark change distance from nucleus / lose energy / emit photons \checkmark	2	1.1	
	(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.0326(4417845)(\mathrm{m})$ award 3 marks recall / rearrange wavelength $=$ speed \div frequency $3 \times 10^{8} \div 9.19 \times 10^{9} \checkmark$ $=0.0326(4417845)(\mathrm{m}) \checkmark$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW $v=f \lambda$ ALLOW answers that make a suitable rounding, $\text { e.g. } 0.033 \text { or } 0.03$
	(c)	Any one from: faster response of emergency services / more efficient delivery of parcels / other sensible suggestions/ easier to find addresses / easier to locate services / easier to locate people from their phone signals /	1	1.1	IGNORE to find your way

Question		Answer	Marks	AO element	Guidance
5	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=1.4 \times 10^{10}(\mathrm{~kg})$ award 3 marks recall / rearrange mass $=$ density \times volume \checkmark $1000 \times(50 \times 350 \times 800)$ or $14000000 \checkmark$ $=1.4 \times 10^{10}(\mathrm{~kg}) \checkmark$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	
	(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=3.2 \times 10^{13}(\mathrm{~J})$ award 3 marks $\begin{aligned} & \text { recall GPE }=\mathrm{mgh} \checkmark \\ & =8.0 \times 10^{9} \times 10 \times 400 \checkmark \\ & =3.2 \times 10^{13}(\mathrm{~J}) \checkmark \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	
	(c)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=6.72 \times 10^{11}(\mathrm{~J})$ award 4 marks recall efficiency $=$ useful out / total in \checkmark $140 \mathrm{MW}=140 \times 10^{6} \mathrm{~W}$ and 1 hour $=3600 \mathrm{~s} \checkmark$ $\left(\left(140 \times 10^{6}\right) \times 3600\right) / 0.75 \checkmark$ $=6.72 \times 10^{11}(\mathrm{~J}) \checkmark$	4	$\begin{aligned} & 1.2 \times 2 \\ & 2.1 \times 2 \end{aligned}$	ALLOW 3 marks for 1.87×10^{8} (did not convert hours to seconds) ALLOW 3 marks for 6.72×10^{5} (did not convert MW to W) ALLOW 2 marks for 187 (no unit conversions)

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
6	(a)		Any two from: medical scans to see inside the body radiotherapy to kill cancer cells airport security scans to look inside luggage	2	1.1	ALLOW (scans for) broken bones ALLOW to see a shadow image (of the inside of the body)
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=8.0 \times 10^{-15}(\mathrm{~J})$ award 3 marks recall / rearrange $\mathrm{W}=\mathrm{VQ} \checkmark$ $50000 \times 1.6 \times 10^{-19} \checkmark$ $8(.0) \times 10^{-15}(\mathrm{~J}) \checkmark$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	
		(ii)	use a higher p.d. / voltage \checkmark	1	2.1	
	(c)		(all) are absorbed by lead \checkmark (all) pass through / penetrate (through) beryllium \checkmark shorter wavelengths pass through copper/ longer wavelength absorbed by copper \checkmark	3	1.1	

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
7	(a)		the ratio of force over acceleration / force \div acceleration / $m=f / a / A W \vee$ a measure of how difficult it is to change the velocity of an object \checkmark	2	1.1	IGNORE acceleration
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $1.2\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ award 3 marks recall acceleration $=$ change in velocity \div time $/$ attempt to calculate gradient of graph \checkmark $\begin{aligned} & 6 \div 5 \mathrm{r} \\ & =1.2\left(\mathrm{~m} / \mathrm{s}^{2}\right) \\ & \hline \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW 2 marks for correct calculation of gradient of a tangent drawn anywhere on the curve.
		(ii)	resultant force/it is constant and any one from: (because) acceleration/gradient constant mass is constant \checkmark force is proportional to acceleration \checkmark	2	2.1	
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 3472 (kg) award 2 marks $\begin{aligned} & 40000=0.5 \times \text { mass } \times 4.8^{2} \checkmark \\ & =3472(\mathrm{~kg}) \checkmark \end{aligned}$	2	2.1	ALLOW answer to the number of significant figures given by the candidate ALLOW $4.8 \pm 1 / 2$ small square; 4.7 gives 3622 kg , 4.8 gives $3472 \mathrm{~kg}, 4.9$ gives 3332 kg

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathbf{8}$ | (a) | all three rays converge at a point \checkmark
 focus labelled where any two rays cross \checkmark | $\mathbf{2}$ | $\mathbf{1 . 1}$ | Rays of light should be straight by eye.
 ALLOW second mark if only two rays drawn |
| | (b) | B is a converging/(plano)convex lens / AW \checkmark
 because it is thicker/wider in the middle / AW \checkmark | $\mathbf{2}$ | $\mathbf{2 . 1}$ | |
| | (c) | Any two from:
 some sound waves will reflect \checkmark
 waves need to slow down to converge / AW \checkmark
 it will act as a diverging/concave lens \checkmark | $\mathbf{2}$ | $\mathbf{3 . 2 b}$ | |

Question		Answer	Marks	AO element	Guidance
9	(a)	biofuels are made from plants / are renewable / are carbon neutral \checkmark fossil fuels are made from fossilised plants or animals / are non-renewable / cause CO_{2} emissions \checkmark both are burnt / combusted to release thermal energy	3	1.1	
	(b)	Any one from: energy density of oil is 2 times wood pellets \checkmark density of oil is 1.25 times wood pellets \checkmark cost of oil is 2.2 times wood pellets \checkmark AND cost per MJ is 1.25 for pellets and 1.375 for oil / 1.1 times larger for oil / 10\% larger for oil \checkmark so overall wood pellets are slightly cheaper \checkmark OR MJ per m ${ }^{3}$ is 15200 for pellets and 38000 for oil / 2.5 times bigger for oil \checkmark so oil needs less storage space \checkmark	3	3.2a	DO NOT ALLOW third marking point (conclusion) unless it is justified with a calculation

Question			Answer	Marks	AO element	Guidance
10	(a)	(i)	specific heat capacity relates to change in temperature / AW \checkmark specific latent heat relates to change in state / AW \checkmark	2	1.1	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $2.85 \mathbf{3 2 6 0 8 7}$ award 3 marks $\begin{aligned} & 52-20=32\left({ }^{\circ} \mathrm{C}\right) \checkmark \\ & 210000 \times 1 /(2300 \times 32 \times 1) \\ & =2.85326087 \end{aligned}$	3	2.1	ALLOW answers that round to 2.85
	(b)		Any two from: temperature of wax decreases $/ \checkmark$ thermal store of wax decreases \checkmark energy is transferred by conduction / convection / radiation \checkmark (as wax solidifies) latent heat is transferred to surroundings \checkmark	2	1.1	ALLOW any correct response that is in relation to energy transfers

Question			Answer	Marks	AO element	Guidance
11	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.1875 award 3 marks recall average speed $=$ distance \div time $\begin{aligned} & 0.12 \div 0.64 \checkmark \\ & =0.1875(\mathrm{~m}) \checkmark \\ & \hline \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW 0.19, 0.188
		(ii)	there is a resultant force on the block / friction (acts on the block) \checkmark so there is an acceleration / deceleration OR the velocity changes \checkmark	2	1.1	IGNORE slows down / speed changes (stem)
	(b)		vary mass / put slotted masses on top of block control/same material / surface area / use the same block or control/same (initial) velocity of block / launch using a spring measure distance travelled (with a ruler) \checkmark	3	3.3a	ALLOW add weight

Question			Answer	Marks	AO element	Guidance
12	(a)		A \checkmark it is a straight line	2	1.1	ALLOW Force is proportional to extension here
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.82(\mathrm{~J})$ award 3 marks attempt to calculate any area on graph \checkmark 82 squares \checkmark $=82 \times 10^{-2}=0.82(\mathrm{~J}) \checkmark$	3	2.2	
	(c)	(i)	elastic deformation \checkmark AND any one from: particles become further apart (but remain in structure) \checkmark particles remain attracted to one another \checkmark	2	1.1	ALLOW bonds stretch ALLOW bonds do not break / do not permanently stretch ALLOW bonds can go back to original size
		(ii)	plastic deformation AND any one from: permanent increase in particles separation / bonds are broken \checkmark rows or planes of atoms slide over one another \checkmark	2	1.1	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

