Oxford Cambridge and RSA

GCSE (9-1)

Combined Science A (Gateway Science)

J250/05: Paper 5 (Foundation Tier)

General Certificate of Secondary Education

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations available in RM Assessor

Annotation	Meaning
	Correct response
\boldsymbol{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
LI	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubtnot given
I	Noted but no credit given

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
l	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Olternative wording
ORA	

3. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Combined Science A:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.

Question	Answer	Marks	AO element	Guidance
1	C	1	1.1	
2	D \checkmark	1	1.1	
3	D \checkmark	1	1.1	
4	D \checkmark	1	1.2	
5	A \checkmark	1	2.2	
6	C	1	2.1	
7	D \checkmark	1	2.1	
8	A \checkmark	1	2.1	
9	A \checkmark	1	1.1	
10	B \checkmark	1	1.2	

Question			Answer	Marks	AO	Guidance
11	(a)		Distance $(=36+36+18)=90 \mathrm{~m} \checkmark$ Displacement $=18 \mathrm{~m} /$ Displacement $=$ shortest distance between 2 points (in a certain direction) / AW \checkmark	2	2×3.1b	ALLOW one option identified as 90 m and the other option as 18 m for 1 mark.
	(b)			2	2×1.1	All 4 correct $=\checkmark \checkmark$ Any 2 or 3 correct \checkmark DO NOT ALLOW contradictory lines, e.g. lines from speed to vector and scalar
	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{2}\left(\mathbf{m} / \mathbf{s}^{2}\right.$) award $\mathbf{2}$ marks (Acceleration $=$) $4(-0) / 2 \checkmark$ (Acceleration =) $2\left(\mathrm{~m} / \mathrm{s}^{2}\right) \checkmark$	2	2×2.2	
		(ii)	Constant speed/velocity \checkmark	1	1.2	ALLOW uniform speed/velocity or steady speed/velocity
		(iii)	Any diagonal line from the origin with a gradient less steep than the line for student B.	1	2.2	ALLOW curved or straight lines with gradient less than the line for student B. IGNORE other lines unless contradictory ALLOW any length of line

Question			Answer	Marks	$\overline{\mathrm{AO}}$	Guidance
12	(a)	(i)	Vertical arrow 5 cm long pointing upwards \checkmark	1	2.2	Judge 5 cm by eye IGNORE label
		(ii)	Contact \checkmark	1	1.1	
	(b)		Forces Unbalanced Speed $\checkmark \checkmark$	2	2×1.1	$\begin{aligned} & \text { All } 3 \text { correct }=\checkmark \checkmark \\ & \text { Any } 2 \text { correct }=\checkmark \end{aligned}$
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 160 (\mathbf{N}) award 2 marks $\begin{aligned} & (\text { Force }=) 0.4 \times 400 \checkmark \\ & (\text { Force }=) 160(\mathrm{~N}) \checkmark \end{aligned}$	2	2×2.1	
	(d)		There is more than 1 force acting on the ball \checkmark Force from foot AND force from wall on ball	2	2×2.1	ALLOW there are forces (acting) on the ball

Question		Answer	Marks	AO element	Guidance
13	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $81(\mathrm{~J})$ award 2 marks $\begin{aligned} & (\mathrm{W}=) 45 \times 1.8 \checkmark \\ & (\mathrm{~W}=) 81(\mathrm{~J}) \checkmark \end{aligned}$	2	2×2.1	
	(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 300 W award 3 marks $\begin{aligned} & (P=) 1500 / 5 \checkmark \\ & (P=) 300 \checkmark \end{aligned}$ W/watts \checkmark	3	$\begin{gathered} 2 \times 2.1 \\ 1.2 \end{gathered}$	ALLOW J/s

Question		Answer	Marks	AO element	Guidance
14	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2 (N) award 3 marks Conversion: $200 \mathrm{~g}=0.2 \mathrm{~kg} \checkmark$ (Force =) $0.2 \times 10 \checkmark$ (Force =) $2(\mathrm{~N}) \checkmark$	3	$\begin{gathered} 1.2 \\ 2 \times 2.1 \end{gathered}$	ALLOW use of 9.8(1) to give an answer of 1.96 (N) for 3 marks ALLOW 2 marks for 2000 (N) (unit conversion missed)
	(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 20 (N / m) award 3 marks Rearrangement: ($\mathrm{k}=$) $\mathrm{F} \div \mathrm{x} \checkmark$ $\begin{aligned} & (\mathrm{k}=) 4.91 \div 0.25 \text { or } 19.6 \\ & (\mathrm{k}=) 20(\mathrm{~N} / \mathrm{m}) \checkmark \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2 \times 2.1 \end{gathered}$	ALLOW candidate's answer to the nearest whole number for 1 mark
	(c)	Mean $=((20+18+20+19) / 4=) 19(\mathrm{~N} / \mathrm{m})^{\checkmark}$	1	1.2	ALLOW 19.25
	(d)	Plot a graph of force against extension / AW \checkmark $\text { Gradient }=\text { spring constant } \checkmark$	2	$2 \times 3.3 \mathrm{~b}$	

	uesti	Answer	Marks	AO element	Guidance
15	*(a)	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Detailed description of experiment. AND A description of how resistance can be calculated from the results. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Detailed description of experiment. OR A basic description of experiment. AND A simple description of how resistance can be calculated. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Basic description of experiment. OR A simple description of how resistance can be calculated. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} 2 \times 1.1 \\ 2 \times 1.2 \\ 2 \times 3.3 \mathrm{a} \end{gathered}$	A01.1 - Demonstrates knowledge that current depends on resistance and p.d. and resistance can change as current changes - Use the current and p.d. to calculate resistance - Resistance = p.d. / current or gradient of V against I graph - If resistance changes with current, then graph of p.d. against current will be curved / ORA AO3.3a - Analyses information to develop experiment to measure resistance - Use a variable resistor / rheostat / potential divider (to change the current) - Take readings at different values of current (and p.d.) - Plot a graph of p.d. against current AO1.2 - Demonstrates knowledge and understanding of how to build circuits - Appropriate circuit diagram - Voltmeter in parallel with wire - Ammeter in series with wire - Ammeter measures current - Voltmeter measures p.d. ALLOW marks to be awarded from a circuit diagram.

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| 15 (b) | (i) | Hazard 1: Wire will get hot / AW
 OR
 Hazard 2: Using mains power supply (in lab) / AW \checkmark | $\mathbf{1}$ | $\mathbf{3 . 3 a}$ | ALLOW idea of getting burnt |
| | (ii) | Any one from:
 Control 1: Use low voltages / low current / connect circuit
 for short time only \checkmark
 Control 2: Keep power supply away from sinks/water \checkmark | $\mathbf{1}$ | $\mathbf{3 . 3 b}$ | ALLOW idea of electrocution (from power supply) |

Question		Answer	Marks	AO element	Guidance

Question			Answer	Marks	AO	Guidance
16	(b)	(i)	Any two from: Density of solids is the greatest / AW \checkmark Density of gases is the least / AW \checkmark Density of solids $>$ density of liquids / ORA \checkmark Density of solids > density of gases / ORA \checkmark Density of liquids $>$ density of gases / ORA \checkmark	2	2×3.1 a	
		(ii)	Atoms more tightly packed in a solid than liquid/ORA \checkmark So greater mass in the same volume / ORA \checkmark	2	2×1.1	ALLOW answers on a labelled diagram
	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 169200 (J) award 2 marks $\begin{aligned} & (E=) 0.2 \times 846000 \\ & (E=) 169200(J) \checkmark \end{aligned}$	2	2×2.1	
		(ii)	Increasing temp (of 1 kg of water by $1^{\circ} \mathrm{C}$) only requires molecules to move faster \checkmark Evaporation requires intermolecular forces to be overcome	2	2×2.1	ALLOW increases the kinetic energy of molecules ALLOW to break (intermolecular) bonds

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

