AS CHEMISTRY (7404/1)

Paper 1: Inorganic and Physical Chemistry

Specimen 2015

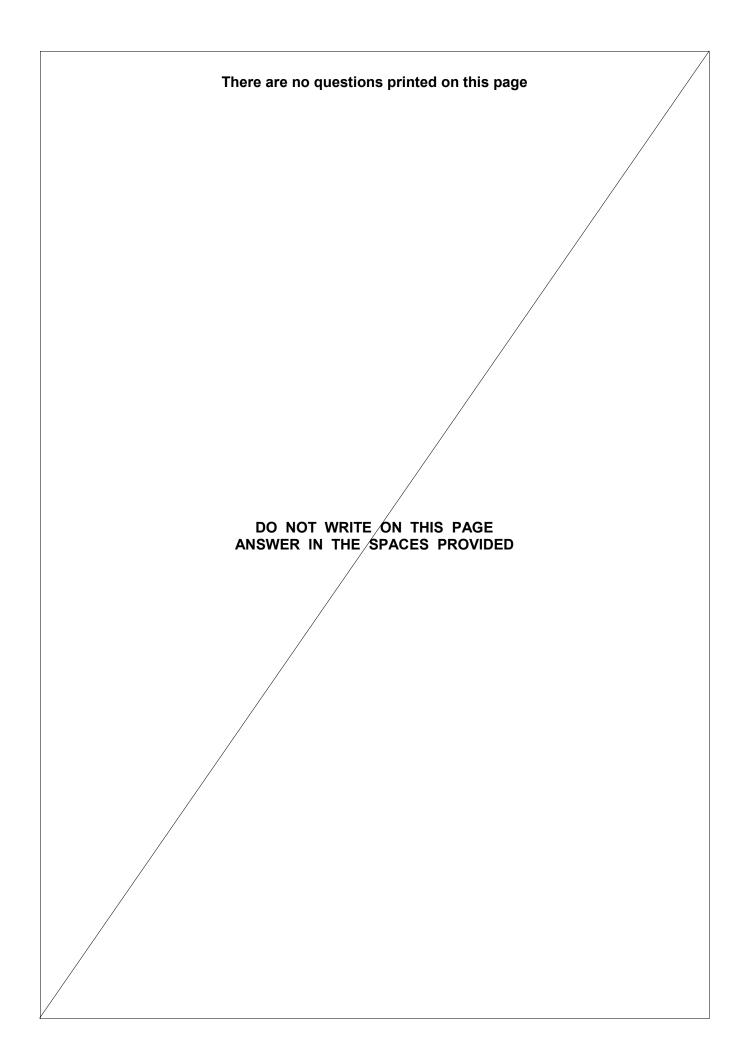
Session

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Data Sheet, provided as an insert
- a ruler
- a calculator.


Instructions

- Answer all questions.
- Show all your working.

Information

• The maximum mark for this paper is 80.

Please write cle	early, ir	ו bl	ock	сар	itals	s, to	allo	ow c	ha	ract	er	con	npu	ter	rec	ogr	itio	n.			
Centre number						Ca	ndic	late	nu	ımb	er										
Surname]
Forename(s)]
Candidate signa	ature																				 -)

	Section A
	Answer all questions in this section.
1	This question is about the elements in Group 2 and their compounds. Use the Periodic Table to deduce the full electron configuration of calcium. [1 mark]
01.2	Write an ionic equation, with state symbols, to show the reaction of calcium with an excess of water. [1 mark]
01.3	State the role of water in the reaction with calcium. [1 mark]
01.4	Write an equation to show the process that occurs when the first ionisation energy of calcium is measured. [1 mark]
	State and explain the trend in the first ionisation energies of the elements in Group 2 from magnesium to barium. [3 marks] Trend Explanation

		of sulfur consisting of three iso ves the relative abundance of				532.16
		Table 1				
		Mass number of isotope	32	33		
		Relative abundance / %	91.0	1.8		
	number of	formation to determine the relation to determine the relation to the appropriate num				ss [4 marks]
			Mass nu			
02.2	Describe h	low ions are formed in a time o	of flight (TC	DF) mass sp	pectrometer.	[2 marks]

02.3	A TOF mass spectrometer can be used to determine the relative molecular mass of molecular substances.
	Explain why it is necessary to ionise molecules when measuring their mass in a TOF mass spectrometer. [2 marks]
	Turn over for the next question

03.1		quation, including st idard enthalpy of for			eaction wi	th enthalpy change equal [1 mark]
03.2	Explain wh	ny CF₄ has a bond a	ingle of 10	9.5°.		[2 marks]
03.3	Table 2 gi	ves some values of		enthalpies of	of formatio	n ($\Delta_{\rm f} H^{\Theta}$).
		[]	Table 2			1
		Substance	F ₂ (g)	CF ₄ (g)	HF(g)	
		$\Delta_{\rm f} H^{\Theta} / {\rm kJ mol}^{-1}$	0	-680	-269	
	Use this v	lpy change for the for $C_2H_6(g) + 7F_2(g)$ alue and the standatenthalpy of formation	$g) \longrightarrow G$ rd enthalpi	$2CF_4(g) +$	6HF(g)	ble 2 to calculate the [3 marks]
		Standard enthal	py of form	ation of C_2	H ₆ (g) =	kJ mol ⁻¹

0 3 • 4 Methane reacts violently with fluorine according to the following equation.					
$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$					
Some mean bond enthalpies are given in Table 3.					
Table 3					
	Bond	C–H	C–F	H–F	
	Mean bond enthalpy / kJ mol ⁻¹	412	484	562	I

A student suggested that one reason for the high reactivity of fluorine is a weak $\mathsf{F}\mathsf{-}\mathsf{F}$ bond .

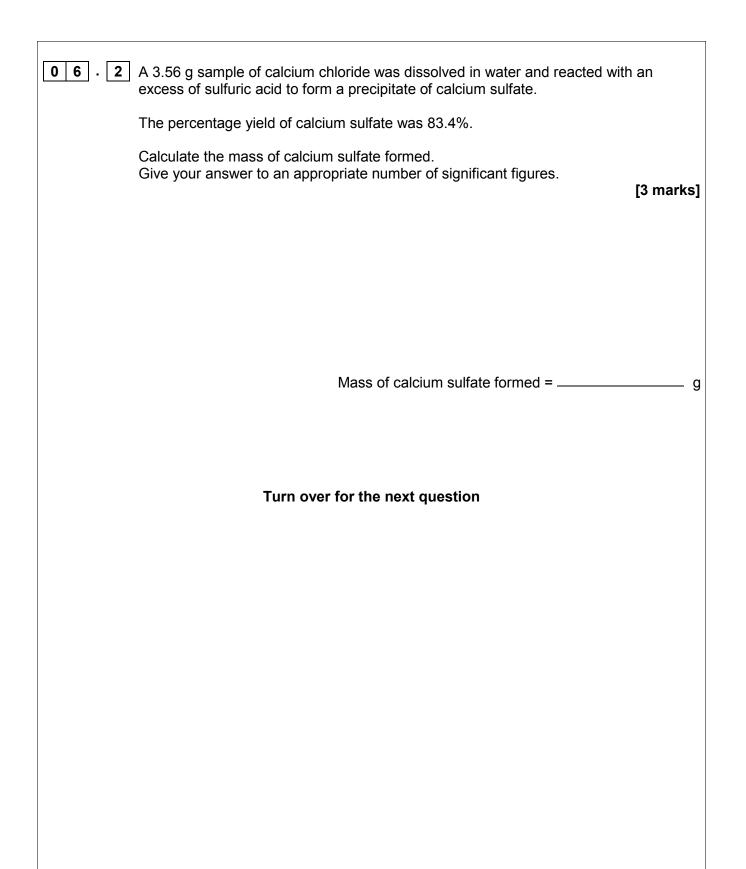
Is the student correct? Justify your answer with a calculation using these data.

[4 marks]

Turn over for the next question

4	Colourless solutions of $X(aq)$ and $Y(aq)$ react to form an orange solution of $Z(aq)$ according to the following equation.
	$\mathbf{Y}(z,z) \rightarrow \mathbf{Q}\mathbf{Y}(z,z) \longrightarrow \mathbf{Z}(z,z) \rightarrow \mathbf{Z}(z,z)$
	$X(aq) + 2Y(aq) \rightleftharpoons Z(aq) \Delta H = -20 \text{ kJ mol}^{-1}$
	A student added a solution containing 0.50 mol of $X(aq)$ to a solution containing
	0.50 mol of Y (aq) and shook the mixture.
	After 30 seconds, there was no further change in colour. The amount of Z (aq) at equilibrium was 0.20 mol.
0 4 . 1	
	[2 marks
	Amount of X(aq) =mol Amount of Y(aq) =mol
04.2	
	time of initial mixing until 60 seconds had elapsed.
	[3 marks

	The student prepared another equilibrium mixture in which the equilibrium concentrations of X and Z were: X(aq) = 0.40 mol dm ⁻³ and Z(aq) = 0.35 mol dm ⁻³ . For this reaction, the equilibrium constant $K_c = 2.9 \text{ mol}^{-2} \text{ dm}^6$. Calculate a value for the concentration of Y at equilibrium. Give your answer to the appropriate number of significant figures.	[3 marks]
	[Y] =	_ mol dm ⁻³
	The student added a few drops of Y (aq) to the equilibrium mixture of X (aq), Y Z (aq) in Question 4.3. Suggest how the colour of the mixture changed. Give a reason for your answ	
	Colour change Reason	
04.5	The student warmed the equilibrium mixture from Question 4.3 . Predict the colour change, if any, when the equilibrium mixture was warmed.	[1 mark]


Г

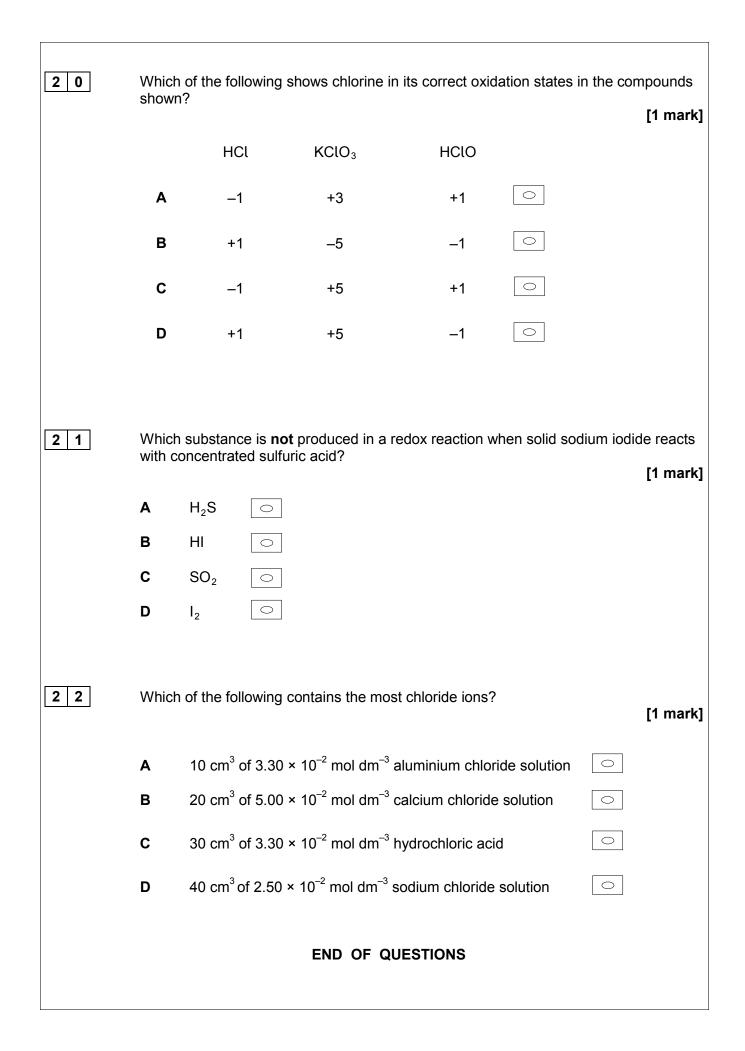
5	This question is about the chemical properties of chlorine, sodium chloride and sodium bromide.
0 5 . 1	Sodium bromide reacts with concentrated sulfuric acid in a different way from sodium chloride.
	Write an equation for this reaction of sodium bromide and explain why bromide ions react differently from chloride ions.
	[3 marks]
	Equation
	Explanation
0 5 . 2	A colourless solution contains a mixture of sodium chloride and sodium bromide.
	Using aqueous silver nitrate and any other reagents of your choice, develop a procedure to prepare a pure sample of silver bromide from this mixture.
	Explain each step in the procedure and illustrate your explanations with equations, where appropriate.
	[6 marks]

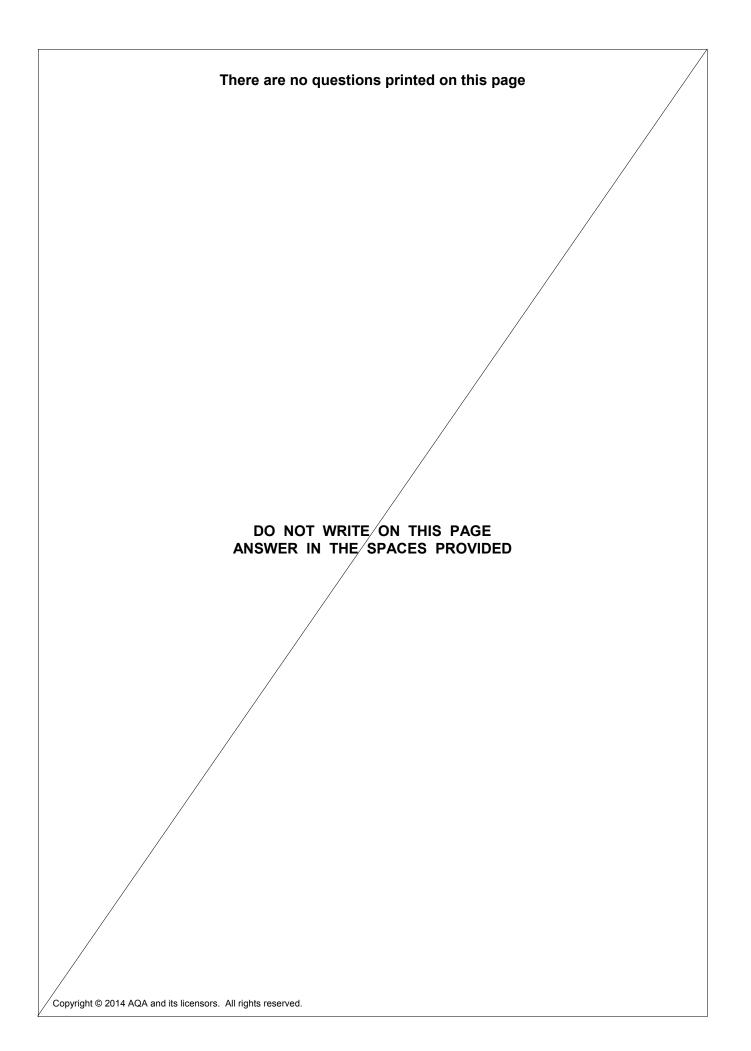
Write an ionic equation for the reaction between chlorine and cold dilute sodium hydroxide solution. Give the oxidation state of chlorine in each of the chlorine-containing ions formed. [2 marks]
Turn over for the next question

6	This question is about reactions of calcium compounds.
	A pure solid is thought to be calcium hydroxide. The solid can be identified from its relative formula mass.
	The relative formula mass can be determined experimentally by reacting a measured mass of the pure solid with an excess of hydrochloric acid. The equation for this reaction is
	$Ca(OH)_2 + 2HCl \longrightarrow CaCl_2 + 2H_2O$
	The unreacted acid can then be determined by titration with a standard sodium hydroxide solution.
	You are provided with 50.0 cm ³ of 0.200 mol dm ⁻³ hydrochloric acid. Outline, giving brief practical details, how you would conduct an accurate experiment to calculate the relative formula mass of the solid using this method.
	[8 marks]

Г

_	
7	A sample of pure $Mg(NO_3)_2$ was decomposed by heating as shown in the equation below.
	$2Mg(NO_3)_2(s) \longrightarrow 2MgO(s) + 4NO_2(g) + O_2(g)$
0 7 . 1	A 3.74 × 10^{-2} g sample of Mg(NO ₃) ₂ was completely decomposed by heating.
	Calculate the total volume, in cm^3 , of gas produced at 60.0 °C and 100 kPa.
	Give your answer to the appropriate number of significant figures. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. [5 marks]
	Total volume of gas = cm^3
0 7 . 2	The mass of MgO obtained in this experiment is slightly less than that expected from the mass of $Mg(NO_3)_2$ used.
	Suggest one practical reason for this. [1 mark]


Section B								
Answer all questions in this section.								
Only one answer per question is allowed.								
For each a	For each answer completely fill in the circle alongside the appropriate answer.							
CORRECT ME	CORRECT METHOD WRONG METHODS S							
If you war	nt to cha	ange your	r answer you must cross out your original answer as shown. 💌	[
If you wish as shown		urn to an a	answer previously crossed out, ring the answer you now wish to s	select				
0 8	8 Which of these atoms has the largest atomic radius? [1 mar							
	Α	Ar	\bigcirc					
	В	Cl	\bigcirc					
	С	Mg	\bigcirc					
	D	Na	\bigcirc					
09	Whic	se species is the best reducing agent?	[1 mark]					
	Α	Cl_2	\bigcirc					
	В	Cl⁻						
	С	I_2	\bigcirc					
	D	Ī	0					


10		ich of these pieces of apparatus has the lowest percentage error in the asurement shown? [1 mark]					
	A	Volume of 25 cm with an error of ±		0			
	В	Volume of 25 cm cylinder with an e	0				
	С	Mass of 0.150 g with an error of ±	0				
	D	Temperature change of 23.2 °C measured \bigcirc with a thermometer with an error of ±0.1 °C.					
1 1	A student is provided with a 5.00 cm ³ sample of 1.00×10^{-2} mol dm ⁻³ hydrochloric acid. The student is asked to devise a method to prepare a hydrochloric acid solution with a concentration of 5.00×10^{-4} mol dm ⁻³ by diluting the sample with water. Which of these is the correct volume of water that should be added?						
	А	45.0 cm ³		0			
	в	95.0 cm ³		\bigcirc			
	С	100 cm ³		0			
	D	995 cm ³		0			
12	Which	of these species h	nas a triç	gonal planar structure		[1 mark]	
	Α	PH ₃	0				
	В	BCl ₃	\bigcirc				
	С	H_3O^+	0				
	D	CH_3^-	0				

1 3	Use your understanding of intermolecular forces to predict which of these compour has the highest boiling point.					
	has the highest boling point.					
	Α	HF	\bigcirc			
	в	HCl	\bigcirc			
	С	HBr	\bigcirc			
	D	HI	0			
1 4	d is formed between N and B when a molecule of NH_3 react	ts with a				
	molecu	ule of BF_3 ?		[1 mark]		
	Α	Ionic.	0			
	в	Covalent.	0			
	С	Co-ordinate	e. O			
	D	Van der Wa	aals.			
1 5	Which	of these ato	oms has the highest electronegativity?			
	_			[1 mark]		
	Α	Na				
	В	Mg				
	С	Cl				
	D	Ar	\bigcirc			
1 6	Which of these atoms has the smallest number of neutrons?					
				[1 mark]		
	Α	³ Н	0			
	В	⁴He	0			
	С	⁵He				
	D	⁴Li	0			

Г

1 7	Which of these substances does not show hydrogen bonding?				
	Α	HF O			
	в	NH ₃			
	С	CH ₃ COOH			
	D	CHF ₃			
1 8	What i	is the formula of calcium nitrate(V)?	[1 mark]		
	Α				
	В	Ca(NO ₃) ₂			
	С	Ca ₂ NO ₂			
	D	$Ca(NO_2)_2$			
19	Which A B C D	Na Mg O Ne Ar	[1 mark]		

