

GCSE (9–1) Chemistry B (Twenty First Century Science)

J258/01 Breadth in chemistry (Foundation Tier) Sample Question Paper

Date – Morning/Afternoon

Time allowed: 1 hour 45 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet

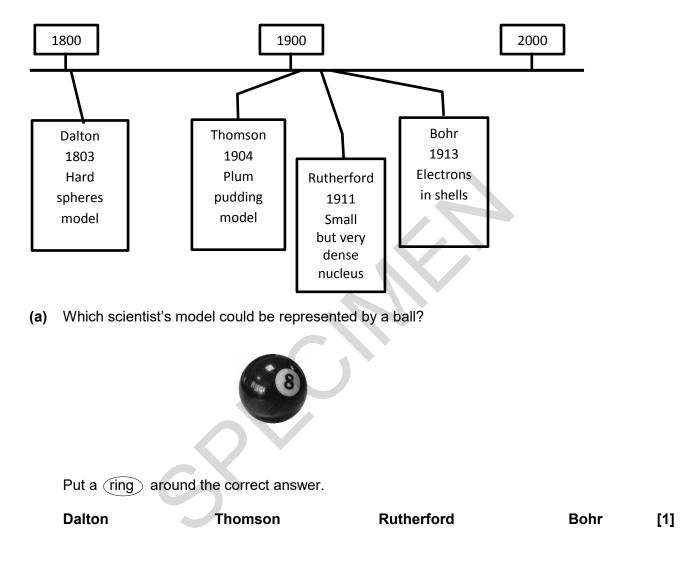
You may use:

• a scientific or graphical calculator

First name	
Last name	
Centre number	Candidate number

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes above with your name, centre number and candidate number.
- Answer **all** the questions.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do **not** write in the bar codes.


INFORMATION

- The total mark for this paper is **90**.
- The marks for each question are shown in brackets [].
- This document consists of **24** pages.

Answer **all** the questions.

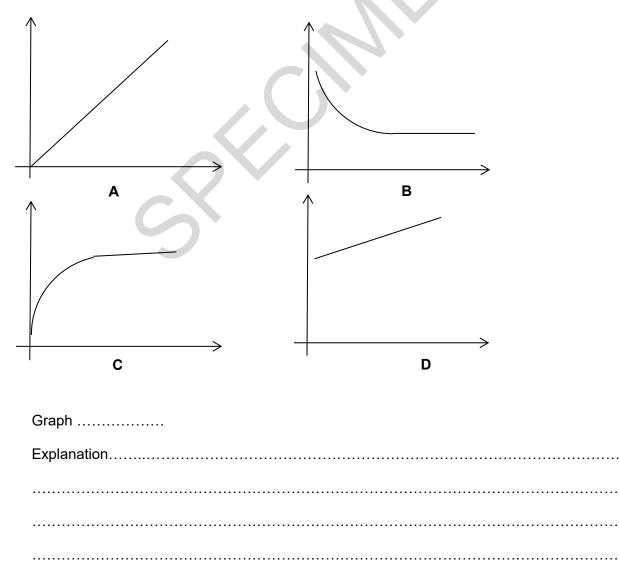
1 The models scientists use to describe atoms have changed over the last 200 years.

This timeline shows some of the main ideas.

(b) Which scientist's model could be represented by this diagram?

Put a (ring) around the correct answer.

Dalton Thomson Rutherford Bohr [1]


- 2 Joe does some research about Group 1 elements of the Periodic Table.
 - (a) He finds out the radius of the atoms of the first three elements in the group.

Element	Total number of electrons in each atom	Radius of the atom (pm)
lithium	3	152
sodium	11	186
potassium	19	231

Which sketch graph, **A**, **B**, **C** or **D**, is the best representation of the trend shown by the data?

Explain how you used the data to make your choice.

[3]

(b) Joe finds out the electron arrangement for the atoms of these elements.

Element	Electron arrangement
lithium	2.1
sodium	2.8.1
potassium	2.8.8.1

Describe the similarities and differences between the electron arrangement in the atoms of these elements.

[3]

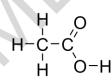
(c) Joe uses the Periodic Table to make a prediction about the order of reactivity of the three elements.

Which order of reactivity for the three elements is correct?

Put a tick (\checkmark) in the box next to the correct answer.

	lithium > sodium > potassium
	lithium < potassium < sodium
	potassium > sodium > lithium
C	lithium < sodium > potassium
	*

[1]


3 Some people have warts on their skin.

Warts can be removed by treating them with a corrosive solution of acids.

Two of the acids in the medicine are from the same family of compounds (homologous series).

н

methanoic acid

ethanoic acid

(a) The molecular formula of methanoic acid is CH_2O_2 .

What is the molecular formula of ethanoic acid?

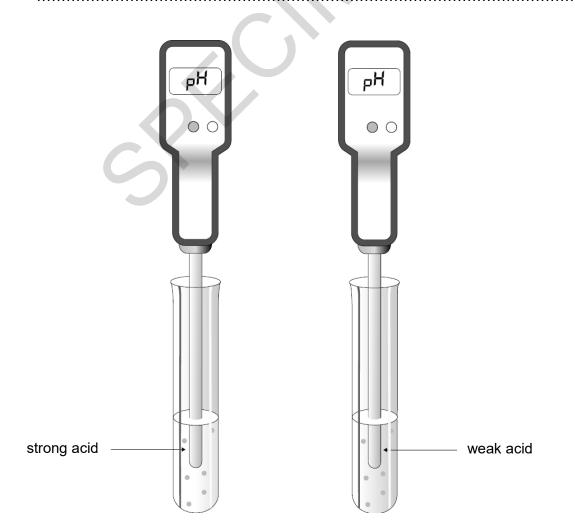
[2]

(b) How do the structures of the acids show that they belong to the same homologous series?Put a tick (✓) in the box next to the correct answer.

Both contain carbon atoms.	
Both contain the same functional group.	
Both are hydrocarbons.	
Both contain a C=C double bond.	[1]

(c) Strong acids are not used in the medicine.

Methanoic acid and ethanoic acid are weak acids.


(i) What is the formula for a hydrogen ion?

Put a (ring) around the correct answer.

- H_2 $H^ OH^-$ HCI H^+ [1]
- (ii) Strong acids are more acidic than weak acids.

One way of telling the difference between a strong and a weak acid is testing the pH.

What results would you expect the pH meter to give for each acid?

4 The purity of gold is measured in carats.

24 carat gold is almost pure gold.

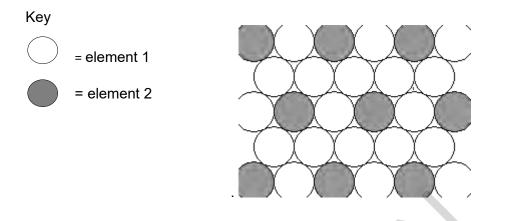
Gold with lower carat values contains other metals.

The graph shows how the percentage of gold by mass is related to its carat value.

- (a) A 2.5 g sample of gold contains 1.9 g of gold.
 - (i) What percentage of gold does the sample contain?

Show your working.

percentage of gold =%
(ii) What is the sample's carat value?

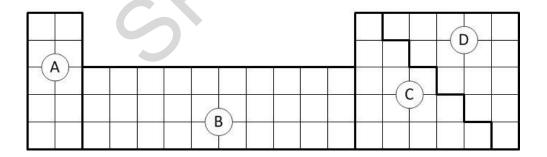

Use your answer to part (i) and the graph to help you answer.

carat value =

(b) 22 carat gold is an alloy which contains approximately 92% gold atoms.

The other 8% contains silver atoms and copper atoms.

Fay finds this diagram of the atoms in an alloy on the internet.

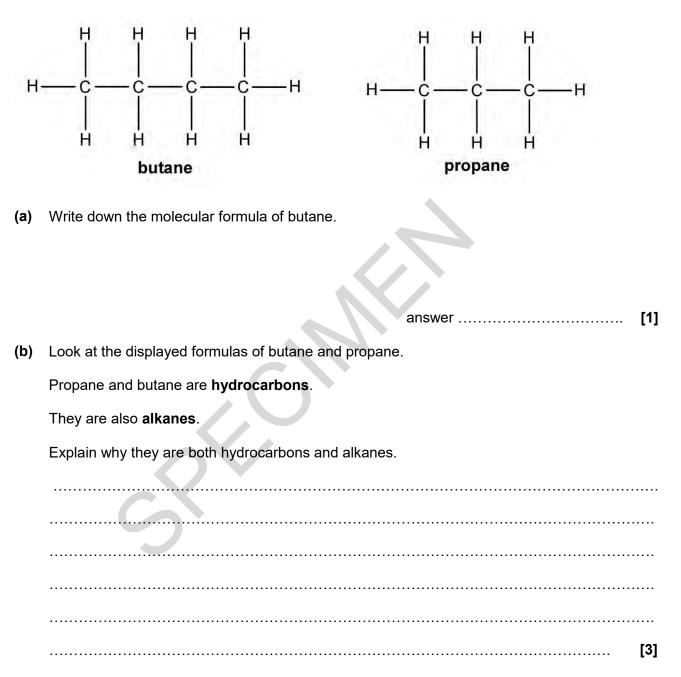


Explain why this diagram does **not** fit the arrangement of atoms in 22 carat gold. Include a calculation in your answer.

..... _____ [2]

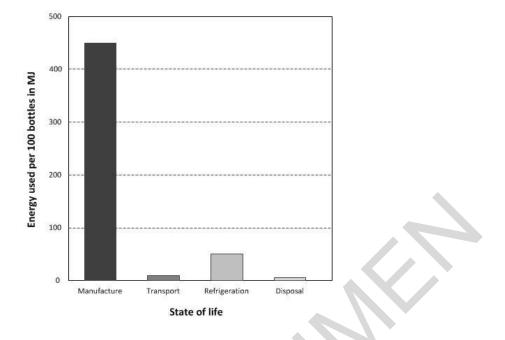
(c) Gold is a transition metal.

Which part of the Periodic Table, A, B, C or D contains transition metals?


answer.....

[1]

5 Crude oil is divided into fractions to make useful products.


One of the fractions in crude oil is LPG.

LPG contains propane and butane.

6 Disposable drink bottles are made from a polymer called PET.

This chart shows the energy used in millions of joules (MJ) for 100 PET bottles during their lifetime.

(a) Which statements about the data are true and which are false?

Put a tick (\checkmark) in the correct column for each statement.

	True (√)	False (∕∕)
Five times as much energy is used for		
refrigeration as disposal.		
The energy of manufacture is more than 10		
times greater than for transport.		
Refrigeration uses less than 15% of the energy		
used for manufacture.		

[3]


(b) One way of using waste PET bottles is to burn them as fuel.

Burning 100 bottles gives out 120 MJ of energy.

Does this provide enough energy to manufacture 100 new bottles?

Use data from the graph to support your answer.

 He used laboratory apparatus similar to this.

(a) Haber made sure his reaction was in a closed system, with no leaks.

What would happen to the yield if there were leaks in the system?

Explain your answer.

(b) A student repeats Haber's experiment.

He works out the theoretical yield for making some ammonia.

(i) 14.0g of nitrogen was reacted with excess hydrogen to produce ammonia. Here is the equation for the reaction.

 $N_2 + 3H_2 \Rightarrow 2NH_3$

Calculate the theoretical yield of ammonia.

Relative formula mass of $N_2 = 28.0$

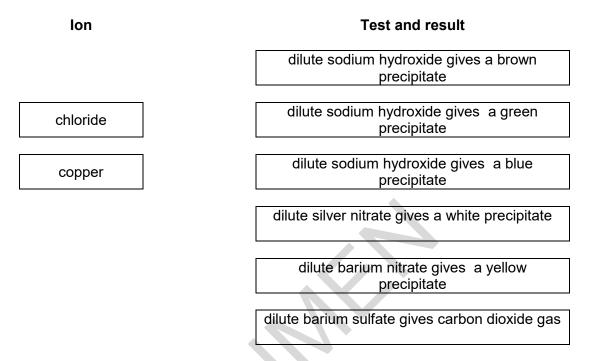
Relative formula mass of NH₃ = 17.0

He separates the ammonia he makes at the end of the reaction and measures its mass.

The table shows his results.

Mass of container and ammonia at the end (g)	59.5
Mass of container (g)	51.0
Mass of ammonia (g)	8.5

(ii) Calculate the percentage yield of ammonia.

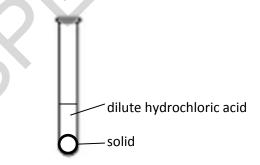

				percer	ntage yield	%	[2]
(c)	The	reaction is ver	y slow.				
	Hab	er used a catal	lyst to speed up	the rate of reaction.			
	(i)	Which staten	nents about cata	lysts are true?			
		Put ticks (✔)	in the boxes nex	kt to the two correct	answers.		
		A catalyst lo	wers the activati	on energy.			
		Catalysts are	e used up quickl	у.			
		A catalyst ch	nanges the react	ion temperature.			
		A catalyst in	creases the time	e taken for the react	ion.		
		The same ca	atalyst can be us	sed in more than on	e reaction.		[2]
	(ii)	Haber change	ed other conditio	ns to make the read	ction faster.		
		Suggest two	other changes to	o conditions that wo	uld make the reacti	on happen faster.	
							[2]
(d)			o make fertilisers nitrogen compo	s for agriculture. unds to make crops	s grow faster.		
	Whie	ch two other in	nportant element	ts do fertilisers prov	ide?		
	Put (rings around t	the two correct a	answers.			
	pota	issium	sulfur	phosphorus	chlorine	sodium	[2]

J258/01

- 8 Salts are made by reacting an acid with a metal or a metal compound.
 - (a) Draw straight lines to connect the **reactants** to the correct **salt formed**.

()	Reactant	S		Salt formed	
		-	zinc su		
	zinc hydroxide an acid	d nitric	magne	sium sulfate	
	magnesium and hydrochloric acid		zinc nit	rate	
			magne	sium chloride	
(b)	When magnesium	reacts with hydro	ochloric acid, a gas is	also made.	
	What is the name	of the gas?			
	Put a (ring) around	the correct answ	ver.		
	hydrogen	nitrogen	oxygen	chlorine	
(c)	Kate makes a solu hydrochloric acid.	tion of zinc chlor	ide by reacting solid z	inc carbonate with dilute	
	She adds too muc	n solid zinc carbo	onate to the reaction r	nixture.	
	She needs to remo	ove the excess so	olid.		
	What separation te	chnique should s	she use?		
	Put a ring around	the correct answ	ver.		
	crystallisation	filtration	distillation	evaporation	

- 9 Rachael has some solids without labels.
 - (a) Rachael does some tests to find out what ions the solids contain.
 She thinks the solids contain copper ions and chloride ions.
 Draw straight lines to connect each ion with the correct test and result.



(b) Rachael uses this test to test for carbonate ions in a solid.

Test for carbonate ions: Add dilute hydrochloric acid, carbon dioxide is given off.

[2]

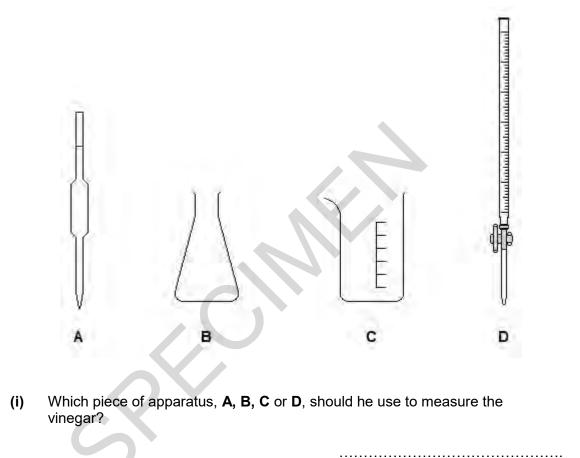
(i) Rachael adds dilute hydrochloric acid to the solid in a test tube.

What will Rachael see happen if carbon dioxide is made?

.....

-[1]
- (ii) What should Rachael use to test for carbon dioxide?

Put a (ring) around the correct answer.


litmus paper	universal indicator	lime water	a glowing spill	[1]
			·	

10 Sam works in a lab that tests samples of vinegar to check their quality.

He finds out the concentration of the acid in some vinegar.

He uses a titration to find out how much dilute sodium hydroxide he needs to add to exactly react with 25.0 cm³ of vinegar.

He has these pieces of glass apparatus, A, B, C and D.

- Which piece of apparatus, **A**, **B**, **C** or **D**, should he use to measure how much
 -[1]

[1]

(b) Explain why Sam needs to use an indicator in the titration.

sodium hydroxide he adds to the vinegar?

[2]

(a)

(ii)

(c) Sam tests samples of vinegar from a vinegar factory,

The factory makes several batches of vinegar each week.

The batches are very large.

The vinegar is put into bottles.

Sam wants to make sure that the samples he tests are representative of all of the vinegar that the factory makes.

Describe how he should choose his samples to make sure they are representative.

			• • • •
			 [2]
(d)	(i)	Sam does another titration. This time he finds out how much dilute sodium hydroxide he needs to react with a sample of sulfuric acid.	
		He writes an equation for the reaction.	
		sodium hydroxide + sulfuric acid \rightarrow sodium sulfate + water	
		Complete the balanced symbol equation for this reaction.	
		$\dots + \dots + H_2 SO_4 \rightarrow \dots + \dots + H_2 O$	[2]
	(ii)	Sam finds that the concentration of the sulfuric acid is the same concentration as the sodium hydroxide. Sam titrates 25 cm ³ of the sulfuric acid.	
		Calculate the volume of sodium hydroxide he uses to neutralise the sulfuric acid.	
		Use your answer from part (i).	

volume of sodium hydroxide =cm³ [2]

11 The surface of the planet Neptune is covered with clouds.

The clouds contain methane and hydrogen.

The diagrams show the arrangement of atoms in methane and hydrogen.

H) H	H H H H H	H hydro	H ogen					
(a)	Com	pare the structures of me	ethane and h	ydrogen.					
	Expla	ain one similarity and on	e difference	between	them.				
	•	,							
	Simi	larity							
	Diffe	rence							
(b)	 (i)	The table shows the bo	illing point ar						[2]
				ng point (^c		82.5			
			boilin	g point (°(C) -1	61.5			
								_	
		Put one tick (\checkmark) in each	n row to show	v the corre	ect state	symbol fo	or methai	ne on Ear	th.
				(S)	(I)	(g)	(aq)		
		State of methane on E	Earth (✓)						
									[1]

(ii) The clouds also contain hydrogen.

-161 °C

energy needed to break forces between hydrogen molecules	<	energy needed to break forces between methane molecules
--	---	--

Use the information in the box to predict the boiling point of hydrogen.

Put a (ring) around the correct answer.

-120 °C

[1]

-253 °C

(c) Methane is an alkane.

Which statements about methane are true?

Put ticks (\checkmark) in the boxes next to the **two** correct answers.

Methane is a carboxylic acid.

Methane contains single covalent bonds.

Methane is in the same family of compounds as ethane and propane.

Methane is an ionic compound.

Methane has a melting point above room temperature.

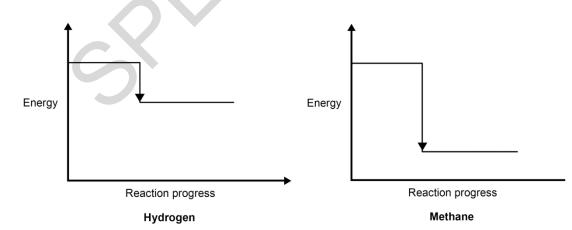
[2]	

© OCR 2015

J258/01

12 Methane and hydrogen can both be used in fuel cells for cars.

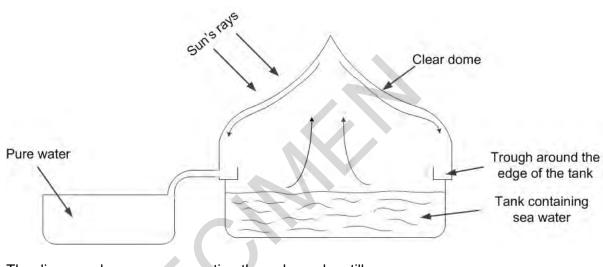
The table shows some information about the reactions that happens in a hydrogen/oxygen fuel cell and in a methane/oxygen fuel cell.


Fuel	Source of fuel	Products of reaction in fuel cell	Energy given out per mole of fuel in kJ
hydrogen	High temperature industrial process.	only water vapour	286
methane	Fossil fuel.	carbon dioxide and water vapour	890

(a) Use the information in the table to evaluate the advantages and disadvantages of using these fuels for a car fuel cell.

(b) The diagrams show the energy changes in the hydrogen and methane fuel cells.

Explain the shapes of the two diagrams.


Use the data in the table in your answer.

13 (a) Chlorine is used in the treatment of drinking water.

Describe how you would test a sample of gas to show that it is chlorine.

(b) A solar still can be used to make sea water safe to drink.

The diagram shows a cross-section through a solar still.

Describe how a solar still produces drinking water from sea water.

14 Scientists think that the composition of the early atmosphere changed slowly over many billions of years.

Scientists estimated the composition of the earliest atmosphere on Earth.

Earth's earliest atmosphere

Gas	Percentage composition (%)
carbon dioxide	1.9
water vapour	95.8
other gases	2.3

Estimated surface temperature = 700 - 1100 °C

Scientists also estimated the composition of the atmosphere shortly before the first plant life existed.

Atmosphere just before the first plant life

Gas	Percentage composition (%)
carbon dioxide	89.8
water vapour	2.1
other gases	

(a) Explain the change in the amount of water vapour shown in the tables.

 [2]

(b) Plants caused further changes to the composition of gases in the atmosphere.

Predict the effect that plants had on the percentage of carbon dioxide in the atmosphere.

Explain your reasoning.

15 Metal extraction produces a lot of waste. The zinc ions from this waste could leak into watercourses and contaminate soil. This plant, Alpine Penny-cress, grows on waste heaps that contain toxic zinc ions.

The cress plants take up the zinc ions and store them in their leaves.

(a) Explain how the planting of Alpine Penny-cress could be used to recycle zinc.

[1]

(b) Explain how growing these plants could reduce risk.

(C) Alpine cress takes up zinc ions from contaminated soil very well.

Oilseed rape cannot take up zinc. The table shows data on Alpine Penny-cress and oilseed rape.

Plant	Height (cm)	Dry mass per plant (g)	Plants per m ²	Time to fully grown (days)
Alpine Penny-cress	25	1	20	100
Oilseed rape	125	2	50	85

Scientists have put genes from Alpine Penny-cress into the oilseed rape plant.

Explain what effect this modified plant could have on the uptake of zinc ions in contaminated soil.

(d) The Alpine Penny-cress contains toxic zinc ions.

Abi decides to do some experimental research to find out whether the Alpine Penny-cress can be used as grazing for sheep.

What research would she need to do to find out if the Alpine Penny-cress is safe for sheep to eat?

[2]

(e) Abi does some tests to find out which metal ions are in some other samples of mining waste, samples A, B and C.

She adds dilute sodium hydroxide, NaOH, to a solution of the metal ions. These are her results.

Mining waste sample	After adding a few drops of NaOH	After adding excess NaOH
A	white precipitate	precipitate dissolves
В	blue precipitate	no further change.
С	no precipitate	

What conclusions can Abi make about the metal ions in the mining waste?

[3] END OF QUESTION PAPER