

GCSE (9–1) Chemistry B (Twenty First Century Science)

J258/03 Breadth in chemistry (Higher Tier)

Sample Question Paper

Date - Morning/Afternoon

Time allowed: 1 hour 45 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet

You may use:

• a scientific or graphical calculator

First name	
Last name	
Centre number	Candidate number

INSTRUCTIONS

- · Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes above with your name, centre number and candidate number.
- · Answer all the questions.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do **not** write in the bar codes.

INFORMATION

- The total mark for this paper is 90.
- The marks for each question are shown in brackets [].
- This document consists of **24** pages.

Answer **all** the questions.

1 Scientists think that the composition of the early atmosphere changed slowly over many billions of years.

Scientists estimated the composition of the earliest atmosphere on Earth.

Earth's earliest atmosphere

Gas	Percentage composition %
carbon dioxide	1.9
water vapour	95.8
other gases	2.3

Estimated surface temperature = 700 - 1100 °C

Scientists also estimated the composition of the atmosphere shortly before the first plant life existed.

Atmosphere just before the first plant life

Gas	Percentage composition %
carbon dioxide	89.8
water vapour	2.1
other gases	

(a)	Explain the change in the amount of water vapour shown in the tables.	
		[2]
(b)	Plants caused further changes to the composition of gases in the atmosphere.	
	Predict the effect that plants had on the percentage of carbon dioxide in the atmosphere.	
	Explain your reasoning.	
		[2]

2 Metal extraction produces a lot of waste. The zinc ions from this waste could leak into watercourses and contaminate soil. This plant, Alpine Penny-cress, grows on waste heaps that contain toxic zinc ions.

The cress plants take up the zinc ions and store them in their leaves.

(a)	Explain how the planting of Alpine Penny-cress could be used to recycle zinc.	
		[1]
(b)	Explain how growing these plants could reduce risk.	1.1
		•
		[2]

(c) Alpine cress takes up zinc ions from contaminated soil very well.

Oilseed rape cannot take up zinc. The table shows data on Alpine Penny-cress and oilseed rape.

Plant	Height (cm)	Dry mass per plant (g)	Plants per m ²	Time to fully grown (days)
Alpine Penny-cress	25	1	20	100
Oilseed rape	125	2	50	85

Scientists have put genes from Alpine Penny-cress into the oilseed rape plant.

soil.		
The Alpine Penny-cress of	contains toxic zinc ions.	
Abi decides to do some e be used as grazing for sh	xperimental research to find out whethe	er the Alpine Penny-cress can
What research would she eat?	need to do to find out if the Alpine Pen	ny-cress is safe for sheep to
		[2
Abi does some tests to fir	nd out which metal ions are in some other	er samples of mining waste,
samples A , B and C .		
samples A , B and C .	ydroxide, NaOH, to a solution of the me	tal ions.
samples A , B and C . She adds dilute sodium h These are her results.	ydroxide, NaOH, to a solution of the me After adding a few drops of NaOH	
samples A , B and C . She adds dilute sodium h		After adding excess NaOl precipitate dissolves
samples A, B and C. She adds dilute sodium h These are her results. Mining waste sample A B	After adding a few drops of NaOH	After adding excess NaOl precipitate dissolves no further change.

[3]

3 (a)	Chlorine is used in the treatment of drinking water. Describe how you would test a sample of gas to show that it is chlorine.	
			[2]
(b)	A solar still can be used to make sea water safe to drink.	
		Sun's rays Clear dome	Trough around the edge of the tank
			Tank containing sea water
		The diagram shows a cross-section of a solar still. Describe how a solar still prowater from sea water.	duces drinking
			[2]

4 The surface of the planet Neptune is covered with clouds of dense material. The clouds contain substances in solid, liquid and gas states.

One of the compounds in the clouds is methane.

The table shows the melting point and boiling point of methane.

melting point (°C)	-182.5
boiling point (°	C)	-161.5

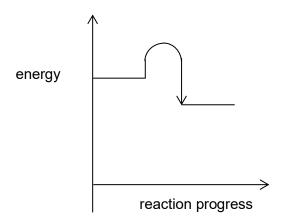
(a) The temperature in the clouds is -218 °C.

Predict the state of methane in Neptune's clouds.

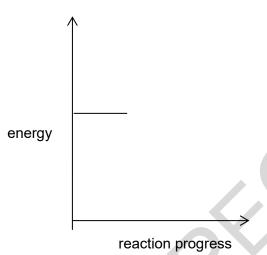
		[1]
(b)	What is the bonding and structure of methane at room temperature?	
		[2]
(c)	What is the name for the family of organic compounds (homologous series) that includes methane?	
		[1]

BLANK PAGE

PLEASE TURN OVER FOR THE NEXT QUESTION


5 Methane and hydrogen can both be used in fuel cells for cars.

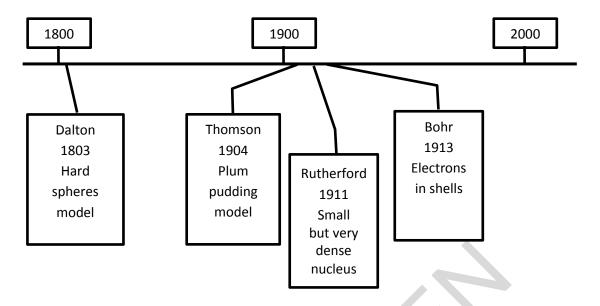
The table shows some information about the reactions that happen in a hydrogen/oxygen fuel cell and in a methane/oxygen fuel cell.


Fuel	Source of fuel	Equation for reaction in fuel cell	Energy change for reaction in fuel cell (kJ/mol)
hydrogen	High temperature reaction between natural gas and steam.	$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$	-286
methane	Directly extracted as natural gas.	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$	-890

(a)	Evaluate the use of hydrogen and methane in fuel cells for cars.
	Use the information in the table in your answer.
	[3]

(b) The graph shows the energy change when **hydrogen** reacts with oxygen.

(i) Complete the diagram below to show the energy change when **methane** reacts with oxygen.



(ii) Use data from the table on the opposite page to explain the energy change you have drawn in (b)(i).

[1]

[1]

The models scientists use to describe atoms have changed over the last 200 years. This timeline shows some of the main ideas.

(a) Write the name of the scientist whose model of the atom could be represented by each of these pictures of everyday items. Use each name once.

(b) Which scientist was the first scientist to include electrons in his model? Put a ring around the correct answer.

Dalton Thomson Rutherford Bohr [1]

(a)	Sodium, Na, reacts wi	th water, H₂O.		
	Write a balanced sym	ool equation for this	reaction.	
(b)	Complete the table be Group 7 elements.	low to show the mol	ecular formula, state a	and colour of the three
		Chlorine	Bromine	lodine
	Molecular formula			
	State (at room temperature)			
	Colour			
(c)	Sodium (Group 1) and	, , ,	react together as show $Cl_2 \rightarrow 2NaCl$	vn by this equation.
	Strontium is in Group	2.		
	Predict the name and chlorine.	formula of the comp	ound that forms when	strontium reacts with
	Name			
	Formula			

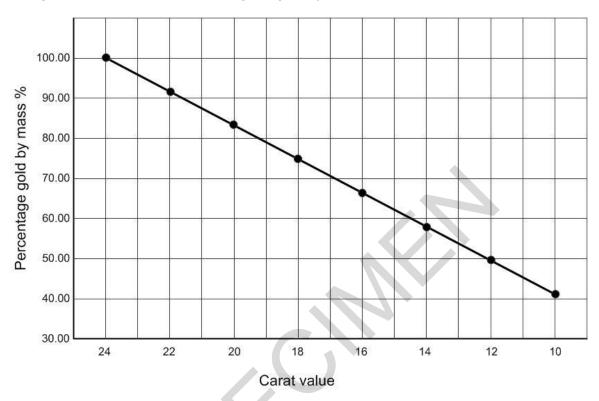
8 Some people have warts on their skin.

Warts can be removed by treating them with a corrosive solution of acids.

(a)	Ellen uses chromatography to find out what acids are in a medicine used to treat warts.					
	She	needs to use a locating agent on her chromatogram.				
	Expl	ain why a locating agent is needed.				
			[2]			
(b)	Eller	n finds out that the medicine contains a mixture of acids.				
	One	of the acids in the medicine is ethanoic acid.				
	The	equation shows ethanoic acid behaving as an acid.				
		CH₃COOH(aq) ⇌ CH₃COO⁻(aq) + H⁺(aq) ethanoic acid				
	(i)	How does the equation show that ethanoic acid is an acid?				
			[1]			
	(ii)	Draw the fully displayed formula for ethanoic acid.				

[2]

(c) Methanoic acid is another acid in the medicine.


		HCOOH nanoic acid		H₃COOH anoic acid						
	Eller form	n says that she th ula.	inks that metha	noic acid and e	thanoic acid hav	e the sa	ame e	mpirical		
	Do y	ou agree with Ell	en?							
	Expl	ain your answer l	by comparing th	e empirical forn	nula of each acid	d.				
									[3]	
(d)	The	acids in the medi	cine are weak a	icids.						
	Wea	k acids are safer	to use on skin t	han strong acid	s because they	are less	corre	osive.		
	(i) Which statements about weak and strong acids are true and which Put a tick (✓) in one box in each row.						:h are false ?			
							rue (√)	False (√)		
		Both types of	acids form water	r in neutralisation	on reactions.					
		Weak acids ha	ave a slower rate	e of reaction wi	th magnesium.					
		Strong acids h	ave a lower deg	gree of ionisatio	n than weak aci	ds.				
						1			[3]	
	(ii)	Ellen uses the l	nydrogen ion co	ncentration to e	estimate the pH v	values c	of acid	ls.		
		Estimate the pl	l of 0.001 mol/d	m ³ hydrochlorid	acid.					
						pH = .				
									[2]	

9 The purity of gold is measured in carats.

24 carat gold is almost pure gold.

Gold with lower carat values is an alloy which contains other metals such as silver and copper.

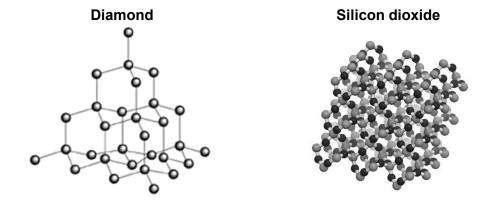
The graph shows how the percentage of gold by mass is related to its carat value.

(a) What mass of other metals are in 20 g of 11 carat gold?

Show your working

.....g **[2]**

(b) A chemist tests a 50 g sample of gold.


He finds that it contains 0.19 **moles** of gold.

What is the carat value of the sample?

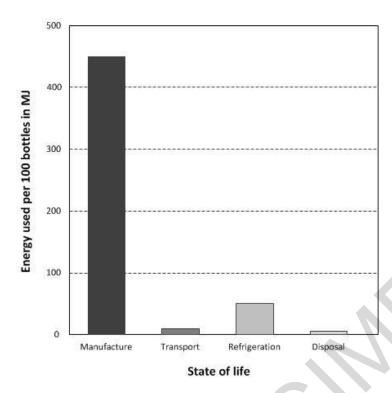
Use the periodic table and the graph above to help you.

(c)	Gold, silver and copper are transition metals.
	Transition metals are different from metals in Group 1.
	Compare chemical properties of transition metals with the chemical properties of Group 1 metals?
	[2]

10 Diamond and silicon dioxide have similar properties.

(a) Describe **two** similarities and **one** difference between the structures of diamond and silicon dioxide.

Similarity 1	
	
Difference	
	[31


(b) The structure of graphite can be used to explain its properties. Draw straight lines to connect each **property** to the correct **explanation**.

Property Conducts electricity. Structure contains layers High melting point. Charged particles in structure can move. Flaky and soft. Strong giant structure.

[2]

11 Disposable drink bottles are made from a polymer called PET.

This chart shows the energy used in millions of joules (MJ) for 100 PET bottles during their lifetime.

Jay talks about recycling waste bottles.

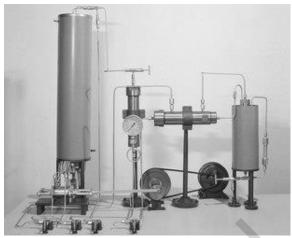
Jay

'I save my empty bottles and take them to a recycling point. This saves on the energy used in disposal of the bottles. '

Does saving energy during disposal make a large impact on the life cycle assessment for 100 bottles?

Use data from the chart to explain your answer.

	[2]


12	Rose	se is a laboratory technician.							
	She	makes up a dilute solution of lime water (calcium hydroxide).							
	(a)	One	laboratory use of lime water is to test for a gas.						
		Wha	t is the name of the gas and what is the positive result of the test?						
		Gas.							
		Resu	ult	[2]					
	(b)	Rose	e makes 200 cm ³ of 1.50 g/dm ³ solution of calcium hydroxide.						
		(i)	The formula for calcium hydroxide is Ca(OH) ₂ . Calculate the concentration of the solution in mol/dm ³ .						
	Give your answer to three significant figures.								
			concentration of solutionmol/dm ³	[3]					
	(ii) Lime water is used to remove sulfur dioxide from waste gases produced by industry.								
		The equation for this reaction is							
			$Ca(OH)_2(aq) + SO_2(g) \rightarrow CaSO_3(s) + H_2O(l)$						
			Calculate the volume of sulfur dioxide that Rose's lime water could remove.						
			(Assume that one mole of gas has a volume of 24 dm^3 at room temperature and pressure)						

Volume of sulfur dioxide...... dm³

[3]

100 years ago, Fritz Haber was the first scientist to successfully react nitrogen gas from the air to make a compound.

He used laboratory apparatus similar to this.

(a) Haber reacted small amounts of nitrogen and hydrogen in a closed system to make ammonia. The reaction is exothermic.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

He investigated how changing the conditions affected the yield.

What effect does increasing the pressure, temperature and using a catalyst have on the yield?

[3]

(b) Haber's reaction vessels were too small scale to make large amounts of ammonia.

Karl Bosch scaled up Haber's laboratory reaction to an industrial scale process.

Compare Karl Bosch's industrial scale process with Haber's laboratory reaction.

[3]

(c) Ammonia is used to make fertilisers for agriculture.

Ammonia provides nitrogen compounds to make crops grow faster.

Give the names of the two other important elements that fertilisers provide.

and

[2]

14	Sodium and	sodium o	compounds	are involved	in many	different ty	pes of reactions
----	------------	----------	-----------	--------------	---------	--------------	------------------

The equations for four reactions, **A**, **B**, **C** and **D** are shown below.

Α	2Na	$aBr(aq) + Cl_2(g) \rightarrow 2NaCl(aq) + Br_2(aq)$	
В	Na⁺	(I) + e- → Na(s)	
С	2Na	$AHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(l)$	
D	2HC	$Cl(aq) + Na_2S_2O_3(aq) \rightarrow 2NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$	
(a)	(i)	Which reaction, A , B , C and D , can be followed by looking at an orange colour change in the solution? Answer	[ו
	(ii)	Which reaction, A, B, C and D , can be followed by looking at a precipitate forming in a solution?	
		Answer[1	1]
	(iii)	Which reaction, A, B, C and D , shows sodium being reduced?	
		Answer[1	1]
(b)		ction C is faster if the solid sodium hydrogencarbonate is used as a powder rather than large lump.	

Explain why.

[2]

15 Sam works in a lab that tests samples of vinegar to check their quality.

Vinegar is mainly a mixture of ethanoic acid and water. Vinegar needs to have a minimum of 5% acidity to be used to preserve food.

He uses a titration to find out how much 1 mol/dm³ sodium hydroxide he needs to add to exactly react with 25.0 cm³ of vinegar.

(a) Calculate how much ethanoic acid needs to be in 25 cm³ of vinegar.

Use the equation:

% acidity = $\frac{\text{mass of ethanoic acid (g)}}{\text{mass of vinegar(g)}} \times 100$

 $1 \text{ cm}^3 \text{ of vinegar} = 1.01 \text{ g}$

amount of ethanoic acid......g [2]

(b) The equation below shows ethanoic acid behaving as an acid.

Calculate the minimum volume of sodium hydroxide Sam uses in his titration.

Relative formula mass of $CH_3COOH = 60.0$

END OF QUESTION PAPER