

KS3 Science

Pressure

Question Paper

Time available: 36 minutes Marks available: 47 marks

www.accesstuition.com

(a) When Jenny writes, the pencil exerts a force of 5N on the paper.

not to scale

The area of the pencil in contact with the paper is 0.5 mm².

Calculate the pressure of the pencil on the paper. Give the unit.

 	 	 • • • • • •

2 marks

Jenny puts a book on her desk.She lifts the cover up with her finger, using a force of 0.5 N.The cover is 10 cm wide.

Calculate the turning managerial Calculate the unit.	oment on the cover o	f the book.	

2 marks

(c) Jenny's book has an area of 200 cm ². It exerts a pressure of 0.05 N/cm² on the desk.

What is the weight of the book?
Use the space below to show your working.

2 marks maximum 6 marks

2.

David uses a falling mass to split wooden logs.

The 5 kg mass slides down the rod and hits the metal blade. The force on the blade splits the log.

(a) To lift the mass David uses energy stored in his muscles.

What energy transfer occurs when David's muscles lift the mass?					
from	energy in his muscles to				
gravitational potential energy of the mass					

1 mark

1 mark

- (b) David lifts the mass. The mass gains 50 J of gravitational potential energy. The falling mass changes this energy into kinetic energy.
 - (i) As it falls, what is the maximum amount of energy the mass can change from gravitational potential energy to kinetic energy?

......J

	(ii)	Not all the gravitational potential energy is transferred to kinetic energy as the mass falls. Give one reason for this.	
			1 mark
(c)	Give blade	two ways David can increase the kinetic energy of the mass just before it hits the e.	
		1	1 mark
		2	1 mark
(d)		d can use a different blade to split the logs. diagram below shows two different blades A and B .	
		A B Skg Skg	
		formula for pressure is: $pressure = \frac{force}{area}$	
		ch blade puts more pressure on the log? the letter.	
	Expl	ain your answer in terms of area. Use the formula to help you.	
		maximum	1 mark 6 marks

Diagram A represents a gas in a container.

The gas can be compressed by moving the piston to the right.

dia gram A

(a)	(i)	How can you tell that the substance in the container is a gas?		
			1 mark	
	(ii)	How can you tell from the diagram that the gas is pure?		

(b) The piston is moved to the right as shown in diagram **B**.

diagram B

now can you to	ell, morn diagram	b , that the press	sure or the gas na	as increaseu?

1 mark

1 mark

Diagram ${\bf C}$ shows what happened to the molecules after the gas was (c) compressed more.

diagram C

compressed?	hat a chemical react	ion happened when the gas was	
			1
The mass of the g	as in both diagrams	B and C was 0.3 g.	
Why did the mass	of the gas not chan	ge when it was compressed?	
			1
Computate the table		waat ah awaisal fawaasila af aa ah	ı
Complete the fabi	e below with the cor		
substance. Use th		rect chemical formula of each	
		Key	
substance. Use th	e key to help you.	Key ● nitrogen	
substance. Use the	e key to help you.	Key	
substance. Use th	e key to help you.	Key ● nitrogen	
substance. Use the	e key to help you.	Key ● nitrogen	
substance. Use the	e key to help you.	Key ● nitrogen	1
substance. Use the	formula	Key ● nitrogen	1
substance. Use the	formula of the substance re	Key ● nitrogen ○ oxygen	1

4.

The drawing below shows a space buggy on the surface of Mars.

(a)	The distance between Earth and Mars is 192 000 000 km.	
	It took a spacecraft 200 days to take the buggy from Earth to Mars.	
	Calculate the speed at which the spacecraft travelled.	
	Give the unit.	
		2 marks
(b)	The weight of the buggy was 105 N on Earth and 40 N on Mars.	
	Why was the weight of the buggy less on Mars than on Earth?	
		1 mark
(c)	The buggy uses solar panels to generate electrical energy.	
	The solar panels generate less electrical energy on Mars than on Earth.	
	Give a reason why.	
		1 mark

(d)	The weight of the buggy was 40 N on Mars. When the buggy landed on Mars it rested on an area of 0.025 m ² .	
	Calculate the pressure exerted by the buggy on the surface of Mars.	
	Give the unit.	
		2 marks

The diagram below shows a container filled with a liquid.

5.

At each end of the container there is a piston. Piston A has a smaller area than piston B.

(a)	(i)	Rebekah pushes on the pedal. This produces a force of 200 N on piston A.
		Calculate the pressure that piston A exerts on the liquid. Give the unit.

Page 9 of 16

maximum 6 marks

	(ii)	The liq	uid in the container exer	ts the same pressure on p	iston B.	
		Use thi	s pressure to calculate t	he force on piston B.		
					IN	1 mark
(b)	She	measure	up a different experiment and the volume of the lique fore and after a 200 g loa		1.	
			liquid	2 lo	oo g	
W	vithou	t load	with load	without load	with load	
	(i)	change	the loads were added to e but the volume of the an why this happened.	the pistons, the volume of iir decreased.	the liquid did not	
						1 mark

(ii)	The diagram on the opposite page represents the way the brake system of a car works. The brake pedal pushes piston A. Piston B pushes the brakes on.				
	If air bubbles get into the liquid, the brakes do not work properly. Explain why. Use the diagrams above to help you.				
			1 mark maximum 5 marks		
Tom tries	on four types of footwear in a sports shop.				
	ski boot	trainer			
	ice skate	walking boot			
(a) (i)	When Tom tries on the footwear, which one	e sinks into the carpet the most?			
			1 mark		

6.

	correct box.				
		the area of the	footwear		
		Tom's weight or	n the footwear		
		the material of t	the footwear		
		the weight of th	e footwear		
					1 mark
(b)	The drawing below	shows a snowsh	oe.		
			-snov	vshoe	
	How do snowshoes	help people to w	alk in deep snow)?	
					1 mark
(c)	Choose the correct	word from the list	t to complete the	sentence below.	
	air resistance	friction	gravity	magnetism	
	When Tom is ice ska	ating the force of			
	between the skate a	and the ice is less	s than when he is	s walking on a carpet.	1 mark Maximum 4 marks

When Tom tries on the footwear, what is the same for each type of footwear? Tick the

(ii)

Karen pushes the handle down with a force of 175 N.

(a)	What pressure does she exert on the air in the pump?	
		1 mark
(b)	The air pressure in the tyre is 27 N/cm ² . What pressure would be needed in the pump in order to pump more air into the tyre?	
		1 mark
(c)	Another of Karen's car tyres exerts a pressure of 30 N/cm 2 on the road. The area of the tyre in contact with the road is 95 cm 2 What is the force exerted by the tyre on the road?	
	N	1 mark
		· ····ain

Maximum 3 marks

(a) James is cutting a piece of wire with a pair of wire cutters.

8.

James exerts a force of 50 N on each of the handles.

(i)	What is the turning moment about the pivot, on each handle? Give the unit.	
		2 marks
(ii)	What force is applied, by each blade, on the wire?	
	N	

(b) Stephanie uses the same pair of wire cutters. The diagram below is an end-on view of the blades as they begin to cut the wire.

1 mark

Stephanie exerts a force of 200 N on the wire with each blade. The area of contact of each blade on the wire is 0.0005 cm².

(i)	What is the pressure of each blade on the wire? Give the unit.				
		2 marks			
(ii)	As the blades sink deeper into the wire, the pressure of the blades on the wire decreases. Explain why the pressure on the wire decreases.				
		1 mark			

(a) Two syringes are connected together as shown in the diagram below.

9.

Maximum 6 marks

A force of 20 N is applied to the piston in syringe A. (i) Calculate the pressure that the piston in syringe A exerts on the oil. Give the units. 1 mark (ii) Calculate the force needed to just prevent the piston in syringe B from moving out. Give the unit. 1 mark (b) The diagram below shows the brake pedal used to operate the brakes in a car. The foot applies a force of 50 N. pivot of pedal piston P. brake fluid 20 cm 50 N brake pedal (i) Calculate the force applied to the piston P. Give the unit. 1 mark The brake fluid pushes another piston, Q, which is attached to the car's brakes. (ii) Piston Q has an area which is eight times larger than piston P. Calculate the force on the car's brakes. Give the unit.

> 1 mark Maximum 4 marks