

# Separation Techniques 

## Question Paper

Time available: 41 minutes Marks available: 57 marks

1. Russell put ground-up coffee beans in a coffee maker and added hot water.


He pushed the plunger down.
This separated the coffee drink from the ground-up coffee beans.
(a) How could Russell see that some coffee had dissolved in the water?
$\qquad$
(b) The end of the plunger is a circle of wire mesh.

(i) Which mesh would be best to separate the coffee drink from all the ground-up coffee beans? Write the letter.
$\qquad$
(ii) This method of making coffee uses a type of filter.

The apparatus used for filtration in a school laboratory is drawn below.


Which part of the apparatus above works in the same way as the wire mesh? Write the letter.
$\qquad$
(c) Russell wanted to separate the water from the coffee drink.

He set up the apparatus shown below.

(i) Why did Russell put ice cubes around the glass tube?
$\qquad$
(ii) Choose words from the box below to fill the gaps in the following sentences.

| an acid | a gas | a liquid | a solid |
| :---: | :---: | :---: | :---: |
| condensation | crystallisation | evaporation | filtration |

Russell heats the water. Water in the drink changes from
$\qquad$ into $\qquad$
This change of state is called $\qquad$
Water vapour changes into liquid. This change of state is called
$\qquad$ . .
2. Lavender oil is a perfume obtained from lavender flowers.

Steam at $100^{\circ} \mathrm{C}$ is passed through the flowers in the apparatus below.


Water vapour and lavender oil vapour pass down a copper tube towards a separator.
(a) (i) The lavender flowers are heated in a container with a sealed lid.

Why must the lid be sealed?
$\qquad$
$\qquad$
(ii) What would happen if the container did not have a pressure-release valve?
$\qquad$
$\qquad$
(b) Lavender oil vapour and water vapour cool as they pass down the copper tube. A mixture of lavender oil and water collects in the separator.
(i) What is the change in the physical state of both lavender oil vapour and water vapour as they cool?
from $\qquad$ to $\qquad$
(ii) Look at the separator.

How does this show that the water is denser than lavender oil?
$\qquad$
$\qquad$
(c) Rosie poured some lavender oil into an oil burner.

She heated it with a candle.


The oil changed state.


Which diagram represents this change of state?
Write the letter.
$\qquad$
3. Chris collected some sea water near a beach.

The sea water had salt dissolved in it. It had sand mixed in it.
(a) Chris separated the sand from the salt water as shown below.

(i) What is this method of separation called?

Tick the correct box.
chromatography

filtration

(ii) What is substance A?
$\qquad$
(iii) What is the part labelled $B$ ?
$\qquad$
(b) Chris poured some of the salt water from the flask into a dish.

He put the dish on a balance and left it in a warm room for a week.

(i) Look at the two readings on the balance.

Work out the decrease in mass.
$\qquad$ g
(ii) After one week there was a white solid but no liquid in the dish. What had happened to the water in the dish?
(iii) What was the white solid left in the dish?
$\qquad$

3 marks maximum 6 marks
4. Rema used the apparatus below to distil $100 \mathrm{~cm}^{3}$ of water-soluble ink.

apparatus A
not to scale
(a) Which processes occur during distillation?

Tick the correct box.

(b) Give the name of the colourless liquid that collects in the test-tube.
$\qquad$
(c) What would the temperature reading be on the thermometer when the ink has been boiling for two minutes?
$\qquad$ .${ }^{\circ} \mathrm{C}$
(d) (i) Water at $15^{\circ} \mathrm{C}$ enters the condenser at X .

Predict the temperature of the water when it leaves the condenser at Y .
$\qquad$ ${ }^{\circ} \mathrm{C}$

Explain this change of temperature.
$\qquad$
$\qquad$
(ii) Give two ways in which the water vapour changes as it passes down the glass tube in the condenser.

1. $\qquad$
2. $\qquad$
(e) Peter used the apparatus below to distil $100 \mathrm{~cm}^{3}$ of water-soluble ink.

apparatus B
not to scale
Why is the condenser in apparatus $\mathbf{A}$ better than the glass tube and beaker of water in apparatus B?
$\qquad$
$\qquad$
3. A meteorite landed on Earth. It contained a new element.

Scientists called the element jovium.

(a) The list below shows some properties of jovium.

Which two properties suggest that jovium could be a metal?
Tick two boxes.

It has a high melting point. $\square$

It does not stick to a magnet. $\square$

It is a blue solid.


It is a good conductor of heat and electricity.

It glows in the dark. $\square$
(b) A scientist put a piece of the meteorite in water and stirred it.

This produced a blue solution with tiny, solid, black particles in it.
He separated the black particles from the blue solution using the apparatus below.
(i) Give the name of this method of separation.
$\qquad$

(ii) The diagram below shows the results.

What do the labels $A$ and $B$ show? Write your answers on the lines.

(c) The scientist poured the contents of the flask into a dish.

Two days later there were blue crystals in the dish, but no liquid.


What happened to the liquid in the dish?
$\qquad$
1 mark
maximum 6 marks
6. Diagrams A, B and C show three pieces of apparatus for separating substances.
(a) Draw a line from each apparatus to the name of the method of separation. Draw only three lines.
diagram of apparatus

distillation



## crystallisation

(b) Debbie has a mixture of sand and salt water.

Look at the diagrams in part (a).
(i) Which apparatus would Debbie use to separate the sand from the salt water? Give the correct letter.
$\qquad$
(ii) Which apparatus would she use to separate pure water from the salt water? Give the correct letter.

1 mark
Maximum 5 marks
7. Kerry made some copper sulphate crystals. She wrote a description of what she did.

I heated some dilute sulphuric acid in a beaker and added some copper oxide to it. I stirred the mixture until it became a clear blue colour. I added more copper oxide until no more would react and then filtered the mixture into a dish. A black solid was left on the filter paper. I left the solution in the dish for a week and saw that the liquid had gone and blue crystals were left.

Use the information in Kerry's description to answer the questions below.
(a) What colour is:
(i) copper sulphate solution?
$\qquad$
(ii) copper oxide?
$\qquad$
(b) Write down a word equation for the reaction which took place in the beaker.
$\qquad$ $+$ $\qquad$ $\rightarrow$ $\qquad$ + water

1 mark
(c) Why did Kerry have to filter the mixture?
$\qquad$
$\qquad$
1 mark
8. John ground some coffee beans into little pieces. He put them into a coffee filter and poured
$800 \mathrm{~cm}^{3}$ of boiling water over them to make a jug of coffee.

(a) Complete the sentences below. For each sentence, choose one of the following words.
insoluble soluble solution solvent
(i) The liquid in the jug is brown because parts of the coffee beans are $\qquad$ in water.

1 mark
(ii) Some bits of coffee beans are left on the filter because they are $\qquad$ in water.

1 mark
(iii) The brown liquid which drips through the filter is a $\qquad$ of coffee.

1 mark
(b) How could John get dry, solid coffee from the brown liquid in the jug of coffee?
$\qquad$
$\qquad$
(c) John tried making coffee in the same way using cold water. He used $800 \mathrm{~cm}^{3}$ of cold water and the same amount of ground up coffee beans.
(i) The liquid in the jug was a lighter colour. Why was this?
$\qquad$
$\qquad$
(ii) How much solid coffee could John get back from this liquid?

Tick the correct box.


1 mark
Maximum 6 marks
9. The following diagrams show two methods of separating substances.

method 1

method 2
(a) What is the name of each method?

Method 1 is $\qquad$

1 mark

1 mark
(b) (i) Tick one box to show which of the mixtures can be separated by method 1 .
sugar and salt $\square$
sand and water $\square$
dissolved salt and water $\square$
sand and iron filings

sugar and salt, both dissolved in water $\square$
(ii) From the list give a mixture which can be separated by method 2 but not by method 1.
$\qquad$
(c) Chromatography was used to analyse some soluble inks. The results are shown below.

(i) A purple ink is a dissolved mixture of the red dye and the blue dye. On the right of the diagram draw the pattern you would expect to see for purple ink.

1 mark
(ii) Which three inks contain only one dye?
$\qquad$
(iii) What colour is spot $\mathbf{X}$ ?
$\qquad$
10.

Good quality water is needed for a healthy life.
In the United Kingdom, obtaining safe water for drinking is as simple as turning on a tap. The water is made safe to drink by water companies.

However, in many parts of Africa and Asia, water used for drinking is contaminated and untreated. It is estimated that 2.2 million people die each year as a result of drinking contaminated water.


DADA DANESHANANDA, Man with filtered water from the
Mafi-Zongo water project. www.amurt.net/africa/ghana/2005
www.accesstuition.com
(a) Sea water is not used as drinking water.

Suggest why.
$\qquad$
$\qquad$
(b) Explain why water for drinking is filtered and then treated with chlorine.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(Total 3 marks)

